高蒙 Meng Gao

2024
Fan Wang, YangYang Xu, Piyushkumar N Patel, Ritesh Gautam, Meng Gao, Cheng Liu, Yihui Ding, Haishan Chen, Yuanjian Yang, Yuyu Zhou, Gregory R. Carmichael, and Michael B McElroy. 2024. “Arctic amplification–induced decline in West and South Asia dust warrants stronger antidesertification toward carbon neutrality.” Proceedings of the National Academy of Sciences, March 2024, 121.Abstract
Dust loading in West and South Asia has been a major environmental issue due to its negative effects on air quality, food security, energy supply and public health, as well as on regional and global weather and climate. Yet a robust understanding of its recent changes and future projection remains unclear. On the basis of several high-quality remote sensing products, we detect a consistently decreasing trend of dust loading in West and South Asia over the last two decades. In contrast to previous studies emphasizing the role of local land use changes, here, we attribute the regional dust decline to the continuous intensification of Arctic amplification driven by anthropogenic global warming. Arctic amplification results in anomalous mid-latitude atmospheric circulation, particularly a deepened trough stretching from West Siberia to Northeast India, which inhibits both dust emissions and their downstream transports. Large ensemble climate model simulations further support the dominant role of greenhouse gases induced Arctic amplification in modulating dust loading over West and South Asia. Future projections under different emission scenarios imply potential adverse effects of carbon neutrality in leading to higher regional dust loading and thus highlight the importance of stronger anti-desertification counter-actions such as reforestation and irrigation management.
2023
Meng Gao, Fan Wang, Yihui Ding, Zhiwei Wu, YangYang Xu, Xiao Lu, Zifa Wang, Gregory R. Carmichael, and Michael B McElroy. 2023. “Large-scale climate patterns offer pre-seasonal hints on the co-occurrence of heat wave and O3 pollution in China.” Proceedings of the National Academy of Sciences (PNAS), 120, 26. Publisher's VersionAbstract

Heat waves and air pollution extremes exert compounding effects on human health and food security and may worsen under future climate change. On the basis of reconstructed daily O3 levels in China and meteorological reanalysis, we found that the interannual variability of the frequency of summertime co-occurrence of heat wave and O3 pollution in China is regulated mainly by a combination of springtime warming in the western Pacific Ocean, western Indian Ocean, and Ross Sea. These sea surface temperature anomalies impose influences on precipitation, radiation, etc., to modulate the co-occurrence, which were also confirmed with coupled chemistry–climate numerical experiments. We thus built a multivariable regression model to predict co-occurrence a season in advance, and correlation coefficient could reach 0.81 (P < 0.01) for the North China Plain. Our results provide useful information for the government to take actions in advance to mitigate damage from these synergistic costressors.

Heat waves and air pollution are two prominent threats, both of which have been reported to cause public health and ecosystem crises, particularly under rapid urbanization and global warming (12). Heat waves, defined as consecutive days of excessively high atmosphere-related heat stress (34), adversely influence human health by impacting respiratory and cardiovascular systems. Heat waves are linked with high O3 episodes that harm human health and vegetation (57). In warm seasons, heat waves and extreme O3 events often occur simultaneously due to common driving meteorological conditions, i.e., stagnant high-pressure systems that favor accumulation of heat and O3 precursors (8). Besides, complex chemistry–climate feedbacks through biogenic emissions (source) and uptake by plants (sink) could exacerbate co-occurrence of heat wave and O3 extremes (9). It is imperative to understand driving factors for the co-occurrence of heat and O3 extremes, as accumulating evidence suggests amplified health outcomes beyond the sum of individual effects (1012). Analitis et al. (13) reported that the number of daily deaths during heat wave episodes was 54% higher on high O3 days compared with low O3 days.

Previous studies have linked occurrences of heat waves or O3 extremes, separately, with large-scale atmospheric circulation or sea surface temperature (SST) anomalies (1420). For instance, Zhu et al. (17) demonstrated that the frequency and variability of summertime heat waves over North America was closely associated with SST anomalies in the tropical Atlantic and tropical western Pacific in spring and El Niño–Southern Oscillation phase change. Shen and Mickley (21) showed that O3 concentration in Eastern United States was linked with warm tropical Atlantic SST and cold northeast Pacific SST, as well as positive sea-level pressure (SLP) anomalies over central Pacific and negative SLP anomalies over the Atlantic and North America. However, the climate factors modulating the co-occurrence of heat and O3 extremes at a regional level remain unclear and had only been the subject of limited studies (82224).

With roughly one-sixth of the world’s population and rapid energy-intensive development, China is facing the dual challenge of air pollution and climate change (2526). Central and Eastern China, especially the North China Plain (NCP), experienced improved PM2.5 air quality over past years due to the implementation of the most stringent clean air policy, but now suffers from largest increases in summertime O3 exposure (27). O3 concentrations in the NCP enhanced at almost twice the average pace across China (28). An amplified upward trend of the joint occurrences of heat and O3 extremes has been identified in China over 2013 to 2020 (29). Understanding the driving climate factors for its interannual variability would contribute to long-term planning of control of costressors. Characterizing interannual variability also enables prediction which could allow sufficient time for mitigation of the interactive damages from joint exposure (213033). Previously, we demonstrated the possibility of seasonal prediction of wintertime aerosol pollution in India (34). Considering the strong linkages between O3 level and climate patterns, we argue here that it may also be possible to predict co-occurrence of heat waves and O3 pollution, potentially up to several years in advance, considering the active efforts in developing reliable seasonal (months ahead) and even longer prediction of climate variability (35).

In this study, we aim to identify leading patterns that control the spatiotemporal variability of occurrence frequency (days in a year) of joint heat wave and O3 pollution events (HWOP). We focus on Central and Eastern China (17.5°N to 47.5°N, 98°E to 125°E), where over 80% Chinese population reside and co-occurrences of HWOP events are prominent. Climate drivers are identified by empirical orthogonal function (EOF), which decomposes historical spatiotemporal variations of HWOP frequency that inferred with atmospheric reanalysis and reconstructed daily O3 datasets. Findings from statistical analyses are further supported by numerical model experiments using the state-of-the-art Community Earth System Model version 2.1.3 (CESM v2.1.3). Encouraged by the robustness of the identified teleconnections between co-occurrence events and SST anomalies, we further build a regression-based statistical model to predict summertime HWOP a season in advance, improving our capability in the management of these important health and vegetation costressors.

 

2021
Yan Zhang, Yu Zhao, Meng Gao, Xin Bo, and Chris P. Nielsen. 2021. “Air quality and health benefits from ultra-low emission control policy indicated by continuous emission monitoring: a case study in the Yangtze River Delta region, China.” Atmospheric Chemistry and Physics, 21, Pp. 6411–6430. Publisher's VersionAbstract
To evaluate the improved emission estimates from online monitoring, we applied the Models-3/CMAQ (Community Multiscale Air Quality) system to simulate the air quality of the Yangtze River Delta (YRD) region using two emission inventories with and without incorporated data from continuous emission monitoring systems (CEMSs) at coal-fired power plants (cases 1 and 2, respectively). The normalized mean biases (NMBs) between the observed and simulated hourly concentrations of SO2, NO2, O3, and PM2.5 in case 2 were −3.1 %, 56.3 %, −19.5 %, and −1.4 %, all smaller in absolute value than those in case 1 at 8.2 %, 68.9 %, −24.6 %, and 7.6 %, respectively. The results indicate that incorporation of CEMS data in the emission inventory reduced the biases between simulation and observation and could better reflect the actual sources of regional air pollution. Based on the CEMS data, the air quality changes and corresponding health impacts were quantified for different implementation levels of China's recent “ultra-low” emission policy. If the coal-fired power sector met the requirement alone (case 3), the differences in the simulated monthly SO2, NO2, O3, and PM2.5 concentrations compared to those of case 2, our base case for policy comparisons, would be less than 7 % for all pollutants. The result implies a minor benefit of ultra-low emission control if implemented in the power sector alone, which is attributed to its limited contribution to the total emissions in the YRD after years of pollution control (11 %, 7 %, and 2 % of SO2, NOX, and primary particle matter (PM) in case 2, respectively). If the ultra-low emission policy was enacted at both power plants and selected industrial sources including boilers, cement, and iron and steel factories (case 4), the simulated SO2, NO2, and PM2.5concentrations compared to the base case would be 33 %–64 %, 16 %–23 %, and 6 %–22 % lower, respectively, depending on the month (January, April, July, and October 2015). Combining CMAQ and the Integrated Exposure Response (IER) model, we further estimated that 305 deaths and 8744 years of life loss (YLL) attributable to PM2.5 exposure could be avoided with the implementation of the ultra-low emission policy in the power sector in the YRD region. The analogous values would be much higher, at 10 651 deaths and 316 562 YLL avoided, if both power and industrial sectors met the ultra-low emission limits. In order to improve regional air quality and to reduce human health risk effectively, coordinated control of multiple sources should be implemented, and the ultra-low emission policy should be substantially expanded to major emission sources in industries other than the power industry.
Meng Gao, Zirui Liu, Bo Zheng, Dongsheng Ji, Peter Sherman, Shaojie Song, Jinyuan Xin, Cheng Liu, Yuesi Wang, Qiang Zhang, Jia Xing, Jingkun Jiang, Zifa Wang, Gregory R. Carmichael, and Michael B. McElroy. 2021. “China's emission control strategies have suppressed unfavorable influences of climate on wintertime PM2.5 concentrations in Beijing since 2002.” Atmospheric Chemistry and Physics, 20, 3, Pp. 1497–1505. Publisher's VersionAbstract
Severe wintertime PM2.5 pollution in Beijing has been receiving increasing worldwide attention, yet the decadal variations remain relatively unexplored. Combining field measurements and model simulations, we quantified the relative influences of anthropogenic emissions and meteorological conditions on PM2.5 concentrations in Beijing over the winters of 2002–2016. Between the winters of 2011 and 2016, stringent emission control measures resulted in a 21 % decrease in mean mass concentrations of PM2.5 in Beijing, with 7 fewer haze days per winter on average. Given the overestimation of PM2.5 by the model, the effectiveness of stringent emission control measures might have been slightly overstated. With fixed emissions, meteorological conditions over the study period would have led to an increase in haze in Beijing, but the strict emission control measures have suppressed the unfavorable influences of the recent climate. The unfavorable meteorological conditions are attributed to the weakening of the East Asia winter monsoon associated particularly with an increase in pressure associated with the Aleutian Low.
Shaojie Song, Tao Ma, Yuzhong Zhang, Lu Shen, Pengfei Liu, Ke Li, Shixian Zhai, Haotian Zheng, Meng Gao, Jonathan M. Moch, Fengkui Duan, Kebin He, and Michael B. McElroy. 2021. “Global modeling of heterogeneous hydroxymethanesulfonate chemistry.” Atmospheric Chemistry and Physics, 21, 1, Pp. 457–481. Publisher's VersionAbstract
Hydroxymethanesulfonate (HMS) has recently been identified as an abundant organosulfur compound in aerosols during winter haze episodes in northern China. It has also been detected in other regions although the concentrations are low. Because of the sparse field measurements, the global significance of HMS and its spatial and seasonal patterns remain unclear. Here, we modify and add to the implementation of HMS chemistry in the GEOS-Chem chemical transport model and conduct multiple global simulations. The model accounts for cloud entrainment and gas–aqueous mass transfer within the rate expressions for heterogeneous sulfur chemistry. Our simulations can generally reproduce quantitative HMS observations from Beijing and show that East Asia has the highest HMS concentration, followed by Europe and North America. The simulated HMS shows a seasonal pattern with higher values in the colder period. Photochemical oxidizing capacity affects the competition of formaldehyde with oxidants (such as ozone and hydrogen peroxide) for sulfur dioxide and is a key factor influencing the seasonality of HMS. The highest average HMS concentration (1–3 µg m−3) and HMS ∕ sulfate molar ratio (0.1–0.2) are found in northern China in winter. The simulations suggest that aqueous clouds act as the major medium for HMS chemistry while aerosol liquid water may play a role if its rate constant for HMS formation is greatly enhanced compared to cloud water.
Peter Sherman, Meng Gao, Shaojie Song, Alex T. Archibald, Nathan Luke Abraham, Jean-François Lamarque, Drew Shindell, Gregory Faluvegi, and Michael B. McElroy. 2021. “Sensitivity of modeled Indian monsoon to Chinese and Indian aerosol emissions.” Atmospheric Chemistry and Physics, 21, 5, Pp. 3593–3605. Publisher's VersionAbstract
The South Asian summer monsoon supplies over 80 % of India's precipitation. Industrialization over the past few decades has resulted in severe aerosol pollution in India. Understanding monsoonal sensitivity to aerosol emissions in general circulation models (GCMs) could improve predictability of observed future precipitation changes. The aims here are (1) to assess the role of aerosols in India's monsoon precipitation and (2) to determine the roles of local and regional emissions. For (1), we study the Precipitation Driver Response Model Intercomparison Project experiments. We find that the precipitation response to changes in black carbon is highly uncertain with a large intermodel spread due in part to model differences in simulating changes in cloud vertical profiles. Effects from sulfate are clearer; increased sulfate reduces Indian precipitation, a consistency through all of the models studied here. For (2), we study bespoke simulations, with reduced Chinese and/or Indian emissions in three GCMs. A significant increase in precipitation (up to ∼20 %) is found only when both countries' sulfur emissions are regulated, which has been driven in large part by dynamic shifts in the location of convective regions in India. These changes have the potential to restore a portion of the precipitation losses induced by sulfate forcing over the last few decades.
2020
Meng Gao, Zirui Liu, Bo Zheng, Dongsheng Ji, Peter Sherman, Shaojie Song, Jinyuan Xin, Cheng Liu, Yuesi Wang, Qiang Zhang, Jia Xing, Jingkun Jiang, Zifa Wang, Gregory R. Carmichael, and Michael B. McElroy. 2020. “China's emission control strategies have suppressed unfavorable influences of climate on wintertime PM2.5 concentrations in Beijing since 2002.” Atmospheric Chemistry and Physics, 20, 3, Pp. 1497-1505. Publisher's VersionAbstract
Severe wintertime PM2.5 pollution in Beijing has been receiving increasing worldwide attention, yet the decadal variations remain relatively unexplored. Combining field measurements and model simulations, we quantified the relative influences of anthropogenic emissions and meteorological conditions on PM2.5 concentrations in Beijing over the winters of 2002–2016. Between the winters of 2011 and 2016, stringent emission control measures resulted in a 21 % decrease in mean mass concentrations of PM2.5 in Beijing, with 7 fewer haze days per winter on average. Given the overestimation of PM2.5 by the model, the effectiveness of stringent emission control measures might have been slightly overstated. With fixed emissions, meteorological conditions over the study period would have led to an increase in haze in Beijing, but the strict emission control measures have suppressed the unfavorable influences of the recent climate. The unfavorable meteorological conditions are attributed to the weakening of the East Asia winter monsoon associated particularly with an increase in pressure associated with the Aleutian Low.
ACP_Full_Text
Meng Gao, Jinhui Gao, Bin Zhu, Rajesh Kumar, Xiao Lu, Shaojie Song, Yuzhong Zhang, Beixi Jia, Peng Wang, Gufran Beig, Jianlin Hu, Qi Ying, Hongliang Zhang, Peter Sherman, and Michael B. McElroy. 2020. “Ozone pollution over China and India: seasonality and sources.” Atmospheric Chemistry and Physics, 20, 7, Pp. 4399-4414. Publisher's VersionAbstract
A regional fully coupled meteorology–chemistry model, Weather Research and Forecasting model with Chemistry (WRF-Chem), was employed to study the seasonality of ozone (O3) pollution and its sources in both China and India. Observations and model results suggest that O3 in the North China Plain (NCP), Yangtze River Delta (YRD), Pearl River Delta (PRD), and India exhibit distinctive seasonal features, which are linked to the influence of summer monsoons. Through a factor separation approach, we examined the sensitivity of O3 to individual anthropogenic, biogenic, and biomass burning emissions. We found that summer O3 formation in China is more sensitive to industrial and biogenic sources than to other source sectors, while the transportation and biogenic sources are more important in all seasons for India. Tagged simulations suggest that local sources play an important role in the formation of the summer O3 peak in the NCP, but sources from Northwest China should not be neglected to control summer O3 in the NCP. For the YRD region, prevailing winds and cleaner air from the ocean in summer lead to reduced transport from polluted regions, and the major source region in addition to local sources is Southeast China. For the PRD region, the upwind region is replaced by contributions from polluted PRD as autumn approaches, leading to an autumn peak. The major upwind regions in autumn for the PRD are YRD (11 %) and Southeast China (10 %). For India, sources in North India are more important than sources in the south. These analyses emphasize the relative importance of source sectors and regions as they change with seasons, providing important implications for O3 control strategies.
ACP_Full_Text
2019
Peter Sherman, Meng Gao, Shaojie Song, Patrick Ohiomoba, Alex Archibald, and Michael B. McElroy. 2019. “The influence of dynamics and emissions changes on China’s wintertime haze.” Journal of Applied Meteorology and Climatology, 58, Pp. 1603-1611. Publisher's VersionAbstract
Haze days induced by aerosol pollution in North and East China have posed a persistent and growing problem over the past few decades. These events are particularly threatening to densely-populated cities such as Beijing. While the sources of this pollution are predominantly anthropogenic, natural climate variations may also play a role in allowing for atmospheric conditions conducive to formation of severe haze episodes over populated areas. Here, an investigation is conducted into the effects of changes in global dynamics and emissions on air quality in China’s polluted regions using 35 simulations developed from the Community Earth Systems Model Large Ensemble (CESM LENS) run over the period 1920-2100. It is shown that internal variability significantly modulates aerosol optical depth (AOD) over China; it takes roughly a decade for the forced response to balance the effects from internal variability even in China’s most polluted regions. Random forest regressions are used to accurately model (R2 > 0.9) wintertime AOD using just climate oscillations, the month of the year and emissions. How different phases of each oscillation affect aerosol loading are projected using these regressions. AOD responses are identified for each oscillation, with particularly strong responses from El Niño-Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO). As ENSO can be projected a few months in advance and improvements in linear inverse modelling (LIM) may yield a similar predictability for the PDO, results of this study offer opportunities to improve the predictability of China’s severe wintertime haze events, and to inform policy options that could mitigate subsequent health impacts.
JAMC full paper
S.J. Song, M. Gao, W.Q. Xu, Y.L. Sun, D.R. Worsnop, J.T. Jayne, Y.Z. Zhang, L. Zhu, M. Li, Z. Zhou, C.L. Cheng, Y.B. Lv, Y. Wang, W. Peng, X.B. Xu, N. Lin, Y.X. Wang, S.X. Wang, J. W. Munger, D. Jacob, and M.B. McElroy. 2019. “Possible heterogeneous hydroxymethanesulfonate (HMS) chemistry in northern China winter haze and implications for rapid sulfate formation.” Atmospheric Chemistry and Physics, 19, Pp. 1357-1371. Publisher's VersionAbstract
The chemical mechanisms responsible for rapid sulfate production, an important driver of winter haze formation in northern China, remain unclear. Here, we propose a potentially important heterogeneous hydroxymethanesulfonate (HMS) chemical mechanism. Through analyzing field measurements with aerosol mass spectrometry, we show evidence for a possible significant existence in haze aerosols of organosulfur primarily as HMS, misidentified as sulfate in previous observations. We estimate that HMS can account for up to about one-third of the sulfate concentrations unexplained by current air quality models. Heterogeneous production of HMS by SO2 and formaldehyde is favored under northern China winter haze conditions due to high aerosol water content, moderately acidic pH values, high gaseous precursor levels, and low temperature. These analyses identify an unappreciated importance of formaldehyde in secondary aerosol formation and call for more research on sources and on the chemistry of formaldehyde in northern China winter.
ACP paper
Meng Gao, Peter Sherman, Shaojie Song, Yueyue Yu, Zhiwei Wu, and Michael B. McElroy. 2019. “Seasonal prediction of Indian wintertime aerosol pollution using the Ocean Memory Effect.” Science Advances. Science_Advances_Paper.pdf
Shaojie Song, Athanasios Nenes, Meng Gao, Yuzhong Zhang, Pengfei Liu, Jingyuan Shao, Dechao Ye, Weiqi Xu, Lu Lei, Yele Sun, Baoxian Liu, Shuxiao Wang, and Michael B. McElroy. 2019. “Thermodynamic modeling Suggests declines in water uptake and acidity of inorganic aerosols in Beijing winter haze events during 2014/2015–2018/2019.” Environmental Science & Technology Letters, 6, Pp. 752-760. Publisher's VersionAbstract
During recent years, aggressive air pollution mitigation measures in northern China have resulted in considerable changes in gas and aerosol chemical composition. But it is unclear whether aerosol water content and acidity respond to these changes. The two parameters have been shown to affect heterogeneous production of winter haze aerosols. Here, we performed thermodynamic equilibrium modeling using chemical and meteorological data observed in urban Beijing for four recent winter seasons and quantified the changes in the mass growth factor and pH of inorganic aerosols. We focused on high relative humidity (>60%) conditions when submicron particles have been shown to be in the liquid state. From 2014/2015 to 2018/2019, the modeled mass growth factor decreased by about 9%–17% due to changes in aerosol compositions (more nitrate and less sulfate and chloride), and the modeled pH increased by about 0.3–0.4 unit mainly due to rising ammonia. A buffer equation is derived from semivolatile ammonia partitioning, which helps understand the sensitivity of pH to meteorological and chemical variables. The findings provide implications for evaluating the potential chemical feedback in secondary aerosol production and the effectiveness of ammonia control as a measure to alleviate winter haze.
2018
Shaojie Song, Meng Gao, Weiqi Xu, Jingyuan Shao, Guoliang Shi, Shuxiao Wang, Yuxuan Wang, Yele Sun, and Michael McElroy. 2018. “Fine particle pH for Beijing winter haze as inferred from different thermodynamic equilibrium models.” Atmospheric Chemistry and Physics, 18, Pp. 7423-7438. Publisher's VersionAbstract
pH is an important property of aerosol particles but is difficult to measure directly. Several studies have estimated the pH values for fine particles in North China winter haze using thermodynamic models (i.e., E-AIM and ISORROPIA) and ambient measurements. The reported pH values differ widely, ranging from close to 0 (highly acidic) to as high as 7 (neutral). In order to understand the reason for this discrepancy, we calculated pH values using these models with different assumptions with regard to model inputs and particle phase states. We find that the large discrepancy is due primarily to differences in the model assumptions adopted in previous studies. Calculations using only aerosol phase composition as inputs (i.e., reverse mode) are sensitive to the measurement errors of ionic species and inferred pH values exhibit a bimodal distribution with peaks between −2 and 2 and between 7 and 10. Calculations using total (gas plus aerosol phase) measurements as inputs (i.e., forward mode) are affected much less by the measurement errors, and results are thus superior to those obtained from the reverse mode calculations. Forward mode calculations in this and previous studies collectively indicate a moderately acidic condition (pH from about 4 to about 5) for fine particles in North China winter haze, indicating further that ammonia plays an important role in determining this property. The differences in pH predicted by the forward mode E-AIM and ISORROPIA calculations may be attributed mainly to differences in estimates of activity coefficients for hydrogen ions. The phase state assumed, which can be either stable (solid plus liquid) or metastable (only liquid), does not significantly impact pH predictions of ISORROPIA.
ACP paper
Meng Gao, Gufran Beig, Shaojie Song, Hongliang Zhang, Jianlin Hu, Qi Ying, Fengchao Liang, Yang Liu, Haikun Wang, Xiao Lu, Tong Zhu, Gregory Carmichael, Chris P. Nielsen, and Michael B. McElroy. 2018. “The Impact of Power Generation Emissions on Ambient PM2.5 Pollution and Human Health in China and India.” Environment International, 121, Part 1, Pp. 250-259. Publisher's VersionAbstract

Emissions from power plants in China and India contain a myriad of fine particulate matter (PM2.5, PM≤2.5 micrometers in diameter) precursors, posing significant health risks among large, densely settled populations. Studies isolating the contributions of various source classes and geographic regions are limited in China and India, but such information could be helpful for policy makers attempting to identify efficient mitigation strategies. We quantified the impact of power generation emissions on annual mean PM2.5 concentrations using the state-of-the-art atmospheric chemistry model WRF-Chem (Weather Research Forecasting model coupled with Chemistry) in China and India. Evaluations using nationwide surface measurements show the model performs reasonably well. We calculated province-specific annual changes in mortality and life expectancy due to power generation emissions generated PM2.5 using the Integrated Exposure Response (IER) model, recently updated IER parameters from Global Burden of Disease (GBD) 2015, population data, and the World Health Organization (WHO) life tables for China and India. We estimate that 15 million (95% Confidence Interval (CI): 10 to 21 million) years of life lost can be avoided in China each year and 11 million (95% CI: 7 to 15 million) in India by eliminating power generation emissions. Priorities in upgrading existing power generating technologies should be given to Shandong, Henan, and Sichuan provinces in China, and Uttar Pradesh state in India due to their dominant contributions to the current health risks.

 

Meng Gao, Yihui Ding, Shaojie Song, Xiao Lu, Xinyu Chen, and Michael B. McElroy. 2018. “Secular decrease of wind power potential in India associated with warming Indian Ocean.” Science Advances, 4, 12. Publisher's VersionAbstract
The Indian government has set an ambitious target for future renewable power generation, including 60 GW of cumulative wind power capacity by 2022. However, the benefits of these substantial investments are vulnerable to the changing climate. On the basis of hourly wind data from an assimilated meteorology reanalysis dataset covering the 1980–2016 period, we show that wind power potential may have declined secularly over this interval, particularly in western India. Surface temperature data confirm that significant warming occurred in the Indian Ocean over the study period, leading to modulation of high pressure over the ocean. A multivariable linear regression model incorporating the pressure gradient between the Indian Ocean and the Indian subcontinent can account for the interannual variability of wind power. A series of numerical sensitivity experiments confirm that warming in the Indian Ocean contributes to subsidence and dampening of upward motion over the Indian continent, resulting potentially in weakening of the monsoonal circulation and wind speeds over India.
Science Advances paper.pdf