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Abstract 12 

Haze days induced by aerosol pollution in North and East China have posed a persistent and 13 

growing problem over the past few decades. These events are particularly threatening to densely-14 

populated cities such as Beijing. While the sources of this pollution are predominantly 15 

anthropogenic, natural climate variations may also play a role in allowing for atmospheric 16 

conditions conducive to formation of severe haze episodes over populated areas. Here, an 17 

investigation is conducted into the effects of changes in global dynamics and emissions on air 18 

quality in China’s polluted regions using 35 simulations developed from the Community Earth 19 

Systems Model Large Ensemble (CESM LENS) run over the period 1920-2100. It is shown that 20 

internal variability significantly modulates aerosol optical depth (AOD) over China; it takes 21 

roughly a decade for the forced response to balance the effects from internal variability even in 22 

China’s most polluted regions. Random forest regressions are used to accurately model (R2 > 0.9) 23 

wintertime AOD using just climate oscillations, the month of the year and emissions. How 24 

different phases of each oscillation affect aerosol loading are projected using these regressions. 25 

AOD responses are identified for each oscillation, with particularly strong responses from El Niño-26 

Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO). As ENSO can be 27 

projected a few months in advance and improvements in linear inverse modelling (LIM) may yield 28 

a similar predictability for the PDO, results of this study offer opportunities to improve the 29 

predictability of China’s severe wintertime haze events, and to inform policy options that could 30 

mitigate subsequent health impacts. 31 

  32 
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1. Introduction 33 

Growth in China’s population over the past several decades has coincided with a period of intense 34 

industrialization. This combination has precipitated a jumpstart in China’s economy – which 35 

skyrocketed from the 10th largest economy in the world in 1980 to the second largest in 2018. 36 

Unfortunately, this has given rise also to serious public health issues induced by increased air 37 

pollution. According to the World Health Organization, 91% of the world’s population lives in 38 

areas where air quality exceeds guideline limits (WHO 2016). Notably, air quality standards were 39 

met in only 84 of China’s 338 prefecture-level cities in 2016 (China News Network 2017). The 40 

problem is especially pervasive in winter, when stable synoptic meteorological conditions can 41 

contribute to particularly strong haze events (Zheng et al. 2015). The Chinese government 42 

attempted to mitigate this issue by temporarily shutting down roughly 40% of its factories at the 43 

end of 2017 (more measures in Zheng et al. 2018). The rationale behind the decision is that coal 44 

consumption is one of the dominant sources of China’s air pollution (Guan et al. 2016). While the 45 

sources over this region are primarily anthropogenic, the meteorological conditions that are 46 

conducive to stagnant weather are driven largely by natural causes. An important question is, what 47 

is the role of natural climate variability and how will it affect China’s air quality in the future? 48 

 49 

Teleconnection patterns refer to connections in climate anomalies over large spatial scales. They 50 

project as emergent patterns, and typically exhibit oscillatory behavior, with positive and negative 51 

phases corresponding to different atmospheric and oceanic phenomena. Teleconnections are 52 

caused by couplings of the atmospheric, oceanic, cryospheric and land-based processes, in what 53 

we refer to here interchangeably as natural variability and internal variability. One such example 54 

is the Arctic Oscillation (AO), where the positive phase reflects low surface pressure anomalies in 55 
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the north polar region and the negative shows the opposite (Higgins et al. 2000). The AO may be 56 

connected to the high-pressure region of Mongolia, the Siberian High, a wintertime anticyclonic 57 

pressure system over northeast Eurasia (Wu and Wang 2002; Gong et al. 2001). The strength and 58 

position of the Siberian High are key modulators of the East Asian Winter Monsoon (Ding et al. 59 

2014; Jia et al. 2015), which transports cool, clean air into China’s heavily polluted regions, 60 

clearing out aerosols which have accumulated over roughly a week (Yang et al. 2016). Since this 61 

teleconnection may influence the Siberian High, changes in the AO could have important 62 

implications for China’s air quality. 63 

 64 

Several studies have investigated potential connections between other oscillations and climate in 65 

China (Mantua et al. 1997; Dima and Lohmann 2007; Zhang et al. 2007). Si and Ding (2016) found 66 

that the Pacific Decadal Oscillation (PDO) and Atlantic Multidecadal Oscillation (AMO) are 67 

important drivers of East Asian summer rainfall, and proposed a potential interaction between the 68 

two oscillations through formation of a global stationary baroclinic wave train. Chen et al. (2013) 69 

determined that the relationship between the winter and summer monsoons is associated 70 

predominantly with El Niño-Southern Oscillation (ENSO) SST anomalies, with an anomalous 71 

anticyclone over the western Pacific that persists from winter to spring during El Niño events. 72 

They note a similar anticyclonic pattern during the positive phase of the PDO. As many have 73 

suggested that these oscillations – particularly ENSO and the PDO – affect the monsoonal 74 

circulation over East Asia there is reason to suspect that they could also have significant bearing 75 

on China’s air quality. Finding strong connections between the oscillations and air pollution would 76 

facilitate better understanding of the underlying atmospheric mechanisms and could allow for 77 

improved prediction of haze conditions. From a more general perspective, Kushnir et al. (2019) 78 
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note the importance of climate models for predicting extreme events given the sparsity of 79 

observational data. Numerous studies have investigated the reverse scenario – the effect of 80 

aerosols on teleconnections (Shindell et al. 2015; Shindell et al. 2009; Booth et al. 2012). The fact 81 

that the aerosol-teleconnection interaction could be bidirectional is an important consideration for 82 

prediction of both air quality changes and internal variability in the future. 83 

 84 

Here, we analyze 35 simulations of wintertime (December-January-February) monthly 550 nm 85 

aerosol optical depth (AOD) derived from the Community Earth Systems Model Large Ensemble 86 

(CESM LENS; Kay et al. 2015) over the period 1920-2100 to assess how internal variability has 87 

influenced China’s wintertime haze (typically nitrate, sulfate, ammonium, organic aerosol and 88 

black carbon) and how it could influence pollution in the future. We use AOD because it well 89 

represents spatio-temporal changes in anthropogenic emissions, can be validated with MODIS 90 

observations (Figure S1), and has been shown to correlate well with PM2.5 in China (Xin et al. 91 

2014). We then train random forest regressors to predict haze spatially over eastern China. We 92 

exploit this model to project how changes in the oscillation indices could be reflected in China’s 93 

AOD.  94 

 95 

2. Method 96 

2.1 Data overview – CESM LENS 97 

CESM LENS is an ensemble of 40 fully-coupled CESM1 simulations covering the period 1920-98 

2100. The model begins with a multicentury simulation of a year, 1850, selected as representative 99 

of preindustrial conditions. The model, with constant forcing, reaches a quasi-equilibrium after a 100 
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few centuries. 1 January, year 402 of this simulation is taken to provide the initial conditions for 101 

the first member of the ensemble which is run from 1850-1920 (Deser et al. 2012). This simulation 102 

is integrated then to the year 2100, and is considered the first ensemble member. The remaining 103 

39 simulations are initialized for the same year 1920, except for perturbations in initial air 104 

temperatures (on the order of 10-14 K). These slight differences between simulations impact the 105 

global climate system by altering internal variability. The consequences of this are reflected in 106 

alterations of natural climate oscillation indices. Since we are investigating the impacts of specific 107 

climate oscillation indices – some of which are calculated using SST data – we exclude five of the 108 

40 simulations as they are run by a different climate modelling group, one at the University of 109 

Toronto, and show systematic temperature biases relative to the rest of the ensemble. While 110 

internal variability differs from simulation to simulation, external forcing is consistent for each 111 

member of the ensemble: Coupled Model Intercomparison Projects version 5 (CMIP5) forcings 112 

from 1920-2005 and the Representative Concentration Pathway with 8.5 Wm-2 of additional 113 

radiative forcing (RCP8.5) from 2006-2100. This fact can be exploited to assess the strength of 114 

external forcing changes relative to uncertainty associated with internal variability within CESM 115 

LENS. Prior works have taken advantage of this fact to tease out the relative importance of internal 116 

variability and the forced response (Deser et al. 2012; Vega-Westhoff and Sriver 2017). Further 117 

elaboration of the ensemble is discussed in Kay et al. (2015). 118 

 119 

The Community Atmosphere Model version 5 (CAM5; Conley et al. 2012) is the atmospheric 120 

component of CESM LENS. Since we are investigating changes in aerosol optical depth (AOD) 121 

within CESM LENS, we will narrow our discussion of CAM5 to its aerosol component. The 122 

CAM5 model used in the CESM LENS simulations contains 30 vertical layers extending up to 3 123 
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hPa (roughly 30 km). It utilizes the simplified 3-mode modal aerosol scheme (MAM-3; Liu et al. 124 

2012), which includes only Aitkin, accumulation and coarse aerosol modes. A number of 125 

assumptions are made in this simplified scheme. For the purposes of this research the most 126 

important assumption is that NH3 is not simulated and ammonium is prescribed (Neale et al. 2012). 127 

The interactive aerosols within this CAM5 scheme are black carbon, primary organic matter, 128 

sulfate, dust, sea salt and secondary organic aerosol, which are included in calculating total AOD 129 

over the visible spectrum, the response variable that we investigate in this study. CESM LENS 130 

implements anthropogenic emissions from the Lamarque et al. (2010) IPCC AR5 emissions dataset 131 

for 1920-2005 and emissions corresponding to RCP8.5 from 2006-2100. 132 

 133 

2.2 Comparing internal variability with the forced response 134 

To compare the forced response to internal variability inherent in the model, we compute the 135 

timescale for each response. The forced response is simply the mean AOD of the 35 simulations 136 

over each time step, and the timescale associated with this is associated with its temporal 137 

derivative. The response due to internal variability is the standard deviation of the 35 models at 138 

each time step. Comparing the mean ratio of these two time series shows how long it takes for the 139 

forced response to balance internal variability. If the internal response is greater than the forced 140 

response, we would expect natural variability to play an important role in modulating China’s 141 

wintertime AOD. 142 

 143 

2.3 Regression modelling and prediction 144 

Random forest regression is an ensemble machine learning technique that works by aggregating 145 

decision tree models defined on subsamples of the feature space. Random forest regression 146 
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improves upon the decision tree method (a technique that is often used in weather prediction) by 147 

aggregating over many decision trees to limit the risk of overfitting. In our analysis we use random 148 

forest models composed of 100 decision trees with each tree calculating a regression based on 149 

mean-squared loss in a randomly selected subset of the feature space. Our overall model is defined 150 

on a feature space that includes ENSO, AMO, AO and PDO indices, months of the year and local 151 

SOx (SO2 + H2SO4) emissions as the input features and local AOD as the response. The spatially-152 

averaged winter (DJF) SOx emissions over all of China that are used in CESM LENS are shown 153 

in Figure S2.  154 

 155 

The oscillation indices are defined for each ensemble member through NCAR’s Climate 156 

Variability Diagnostics Package (Phillips et al. 2014). The AO index is defined by the first 157 

Empirical Orthogonal Function (EOF) of sea level pressure. The AMO index is defined by the 158 

detrended time series (i.e. with the effects of anthropogenic climate change removed) of North 159 

Atlantic SSTs (Trenberth and Shea 2006). The ENSO index used here is NINO3.4, defined by 160 

area-weighted sea surface temperature anomalies over a specific region of the tropical Pacific 161 

(Wolter 1987). The PDO index is defined by the first EOF of the mean SST anomaly from 162 

November to March over the Pacific Ocean north of 20°N (Zhang et al. 1997). As the AMO, ENSO 163 

and PDO indices are calculated based on regional SSTs, we discuss briefly here the ocean 164 

component of CESM LENS, Parallel Ocean Program, version 2 (POP2; Smith et al. 2010). POP2 165 

is a three-dimensional ocean general circulation model, which, in this case, uses 60 vertical layers. 166 

Given the lack of global oceanic observations in 1850, POP2 was initialized from a state of rest 167 

based on modern observations, taking advantage of the fact that the upper ocean equilibrates with 168 

the atmosphere on short timescales and that the long timescales associated with the deep ocean 169 
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mean that modern observations at depth are reflective also of preindustrial conditions. Once the 170 

climate system reached a quasi-equilibrium in the multicentury 1850 run, the CESM LENS 171 

simulation was run. 172 

 173 

The spatial patterns of the oscillations are well represented by CESM LENS (Figure S3). We divide 174 

China into grid cells and our overall model is composed of individual random forest regression 175 

models for each grid cell. Each random forest model is trained on the same 70-30 train-test split 176 

of the data. While independent regressions are run for each individual grid cell, the spatial 177 

correlation structure is still accounted for because the oscillation data used as model inputs affect 178 

the meteorology, which connects pollution in nearby locations. To investigate potential delayed 179 

AOD responses to the natural oscillations, we added as inputs oscillation indices at 0 to 11 month 180 

lags. In order to minimize computation time, we removed lags that did not contribute importantly 181 

to the regression. Interactions between the different oscillations were accounted for in the feature 182 

model by creating separate indices for the product of each oscillation pair. After training the model 183 

at a given location, we predict AOD with the test set of inputs and compare to the actual CESM 184 

LENS value at the corresponding location, using R2 as an assessment of the model’s predictive 185 

power. 186 

 187 

Once trained and tested, the random forest models can be used to predict the effects of individual 188 

oscillations. To do this, we stochastically select percentile values for the oscillation indices for the 189 

negative and positive phases of the individual oscillations. Given the structure of the oscillation 190 

data, the negative phase of the oscillation is defined at approximately the 20th percentile and the 191 

positive phase is defined at approximately the 80th percentile. Predicting AOD with these modified 192 
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oscillations in our overall model will provide AOD under negative and positive oscillation 193 

conditions at each spatial coordinate. This method is performed for each oscillation and the AOD 194 

differences between the positive and negative oscillations are used to assess how AOD changes 195 

when going from a positive-phased oscillation to the negative complement – or vice versa.  196 

 197 

3. Results 198 

3.1 Comparing internal variability with the forced response 199 

The timescales for the forced AOD response to balance internal AOD variability in China are 200 

shown in Figure 1. Internal variability plays a significant role over the whole region and it takes at 201 

least roughly a decade for it to be balanced by the forced response throughout China. From the 202 

spatial distribution, it can be seen that the forced response is greatest in eastern China, which makes 203 

sense because of the region’s high levels of anthropogenic emissions. Despite this, it takes roughly 204 

a decade for the effects of the forced response to balance internal variability even over eastern 205 

China. We may conclude from Figure 1 that natural climate variability is important for China’s 206 

haze and it is thus crucial to assess the impacts that each oscillation might have on AOD.  207 

 208 

3.2 Regression modelling fit and predictions 209 

These effects are investigated in the random forest regressor. The R2 fit is shown in Figure 2. 210 

Strong fits (R2 > 0.9) are seen over eastern China, where pollution levels are highest and have the 211 

most important implications for human health. Notably, the fit is poorer in West China, where 212 

temporally-averaged AOD is much smaller and exhibits a noisier response.  213 

 214 
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Percent AOD differences between the positive (80th percentile) and negative (20th) phases of the 215 

major climate oscillations investigated are shown in Figure 3. The AOD distributions reveal that 216 

the impacts due to changing ENSO and PDO phases are the most substantial, with AOD 217 

differences of almost 10% as the climate system shifts from positive to negative phases of ENSO 218 

and PDO. With ENSO, the largest AOD response takes place over south China, where AOD 219 

increases during the positive phase (i.e. El Niño). Zhao et al. (2018) note a similar spatial pattern, 220 

which they associate with an anomalous anticyclone that forms over the Philippine Sea during El 221 

Niño responsible for transport of water vapor and aerosols to the region. With the AMO, there is 222 

a moderate increasing AOD trend over the studied region during the positive AMO phase relative 223 

to the negative. Wang et al. (2009) propose that a weakened winter land-sea temperature gradient 224 

over Eurasia during AMO+ may induce weakened westerlies/anomalous easterlies that moderate 225 

the transport mechanism removing pollution from the region. Therefore, this result also agrees 226 

with previous research. With the AO, there is a slight anomalously negative AOD during its 227 

positive phase over most of the region; however, the connection detected here, like the one for 228 

AMO, is weak. With the PDO, a dipole response can be seen, with lower AOD in the north and 229 

higher AOD in the south, corresponding likely to anomalous northerly winds during the positive 230 

phase transporting pollution southward. This could be connected also to the similar ENSO pattern 231 

seen here as proposed by Zhao et al. (2018).  232 

 233 

3.3 Physical explanations  234 

Now that potential connections between ENSO, AMO, AO and PDO indices and China’s 235 

wintertime AOD have been established from our regression models, we will discuss these effects 236 

in terms of potential physical explanations. Figure 4 shows the composite difference in sea level 237 
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pressure (PSL) and 850 hPa winds between positive (80th percentile) and negative (20th) oscillation 238 

phases. During El Niño, there is anomalously high pressure over the Philippine Sea, consistent 239 

with the proposed anomalously high-pressure system responsible for the transport of water vapor 240 

and aerosol into South China. Southwesterly winds are observed in this region during El Niño, 241 

which also comply with this result. The ENSO PSL response is noted also by Li et al. (2017). 242 

There is not a notable PSL response to the different AMO phases, but the winds tend to confine 243 

local pollution over the region more during AMO+, which explains why more pollution is 244 

predicted by the regression. The difference between AO phases shows a slight strengthening and 245 

eastward shift of the Siberian High and a weakening of the Aleutian Low, which explains the 246 

highly uncertain response pattern displayed in Figure 3. This result agrees with previous literature, 247 

such as Wu and Wang (2002), who note that the AO and Siberian High are parts of a coupled 248 

system where the AO can affect the Siberian High, but the relationship is not consistent over time. 249 

It can also be seen in Figure 3 that the positive phase of the PDO has both a stronger Siberian High 250 

and a deeper Aleutian Low relative to the negative phase, which increases the pressure gradient 251 

contributing to a more powerful East Asian Winter Monsoon. This is reflected in the enhanced 252 

westerly winds in North China during PDO+, which transport much of the heavily-polluted air 253 

offshore. There is concurrently an anomalous anticyclone that forms over the Philippine Sea – 254 

much like the El Niño response – explaining the north-south dipole response seen in AOD.  255 

 256 

Temperature differences at 500 hPa for the four oscillations are displayed in Figure 5. South China 257 

cools while the adjacent waters warm during El Niño, amplifying the winter land-sea temperature 258 

gradient and encouraging stronger westerly winds that could enhance the anomalous anticyclone 259 

formed over the region. There is a general warming over East Asia compared to the western Pacific 260 
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during AMO+, which weakens the land-sea temperature gradient and could explain why winds are 261 

more westward in China during the positive phase. This agrees with Wang et al. (2009) who note 262 

that land warming over Eurasia during AMO+ takes place in the mid and upper troposphere. The 263 

AO reflects a similar temperature pattern as the AMO, albeit with more exaggerated trends, which 264 

is realized in the presence of anomalous easterlies during the positive phase. Similarly, the PDO 265 

composites match the general ENSO pattern with a cooler south China and warmer Pacific 266 

encouraging the anomalous anticyclone.  267 

 268 

4. Discussion and Conclusions 269 

The main purpose of this study was to evaluate the relative importance of emissions and natural 270 

climate variability on China’s wintertime haze using the CESM LENS. This could allow for 271 

refined prediction of severe haze events as the model allows a level of predictive granularity of up 272 

to a few months in advance for the climate oscillations investigated here. We found that random 273 

forest regressions form the basis of a framework that could be used to predict AOD with high 274 

fidelity (R2 > 0.9) over China’s eastern half using as input parameters only climate oscillations, 275 

the month of the year and emissions. The framework provides a means with which to assess the 276 

country-wide contributions attributable to the oscillations and emissions. The results derived from 277 

the regression are notably consistent with past findings and with meteorological changes observed 278 

under changing oscillation states. 279 

 280 

A large difference is seen in South China’s pollution between the different ENSO phases, a result 281 

that agrees with Zhao et al. (2018), who proposed a physical explanation involving formation of 282 

an anomalous anticyclone over the Philippine Sea during El Niño resulting in transport of 283 
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additional water vapor and aerosols to the region, a suggestion supported by the present analysis. 284 

We find also an increase in AOD during AMO+ relative to AMO–, which agrees with the AMO 285 

theory proposed by Wang et al. (2009), in which higher Eurasian winter temperatures during 286 

AMO+ are responsible for weakening the land-sea temperature gradient, providing impetus for 287 

anomalous westward winds relative to AMO–. The effects from the AO are subject to large 288 

variance, which limits our understanding of its effects (if any) on China’s AOD. The PDO exhibits 289 

a dipole response in AOD, with a decline in North China during the positive phase – connected 290 

potentially to a weaker Siberian High-Aleutian Low pressure gradient – with an increase in South 291 

China, connected to the anomalous anticyclone that forms during El Niño. The largest overall 292 

effects are attributable to changing ENSO and PDO phases, with changes as large as 21.9% in 293 

AOD for ENSO and 9.8% for PDO. 294 

 295 

There are a number of limitations that should be noted for this study. First, we investigate here 296 

internal variability and how it manifests itself in terms of a specific CESM ensemble. While we 297 

have found physical explanations for the CESM LENS AOD variability that align with previous 298 

studies, a next step in this research will be to employ a number of different general circulation 299 

models imposing conditions that mirror positive and negative phases of the studied oscillations to 300 

further validate the present results. We could also implement visibility data from meteorological 301 

stations, where the longest datasets extend back to the 1950s. While this comparison could be 302 

done, weak spatial coverage, along with missing data render these observations unhelpful for a 303 

data problem that is already very noisy. Evaluation of observed AOD trends is difficult apart from 304 

the most recent period (i.e. 2000-present), which is too limited of a historical scope to investigate 305 

connections with oscillations whose phases can last for many decades. We have compared the 306 

Accepted for publication in Journal of Applied Meteorology and Climatology.   DOI 10.1175/JAMC-D-19-0035.1.



 15 

magnitude of CESM LENS AOD with AOD measurements from the MODIS instruments (Figure 307 

S1). While CESM LENS underestimates the magnitude of AOD in China, it does capture the 308 

general spatial structure as observed from MODIS – low AOD in western and central China, and 309 

high AOD in southern and eastern China. The observational data are indicative of the reliability of 310 

our results since the spatial structure compares favorably with that from CESM LENS. Another 311 

limitation is the CESM LENS aerosol-chemistry scheme, which is simplified in both its mode 312 

scheme and its treatment of NH3 and ammonium. The scheme also limits our ability to accurately 313 

represent anthropogenic emissions in our regression models, where we use only SOx emissions as 314 

input and are unable to include NOx emissions. Given that SOx emissions also correlate 315 

significantly with NOx, particulate organic matter and secondary organic aerosol emissions (not 316 

shown), there is good reason to believe that SOx emissions should provide a good surrogate for 317 

anthropogenic emissions, and this is reflected in the strong R2 over East China. It is important to 318 

note that China’s haze formation involves complicated processes with many questions remaining 319 

to be answered (e.g. Song et al. 2018). However, since this research is investigating dynamical 320 

effects related to natural climate variability, issues associated with CAM5 chemistry should not 321 

have significant bearing on our results.  322 
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Figures 431 

 432 

Figure 1. Timescale (in years) for the AOD forced response to balance the effects due to internal 433 

variability. This timescale is defined as the ratio of the ensemble AOD standard deviation to the 434 

ensemble AOD forced response (in years-1). Contours are defined in terms of the major scale 435 

ticks denoted in the color bar. Data are masked out over the ocean. 436 
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 438 

Figure 2. Spatial distributions of the test set R2 for the random forest regressor fit to AOD for 439 

each geographic location. Each regressor uses the oscillation indices, the month of the year and 440 

local emissions as parameters with AOD as the response variable. Contours are defined in terms 441 

of the major scale ticks denoted in the color bar. Data are masked out over the ocean. 442 
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 444 

Figure 3. Random forest-derived projections of AOD percentage differences between (a) 445 

ENSO+ and ENSO–, (b) AMO+ and AMO–, (c) AO+ and AO– and (d) PDO+ and PDO–. Data 446 

are masked out over the ocean. 447 
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 449 

Figure 4. Composite differences in PSL for (a) ENSO+ and ENSO–, (b) AMO+ and AMO–, (c) 450 

AO+ and AO– and (d) PDO+ and PDO–. Composite differences of the 850 hPa winds are the 451 

overlaid as arrows on top of each subplot. The wind arrows are specified in units of ms-1 with a 2 452 

ms-1 scale as indicated at the bottom of the figure. 453 
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 455 

Figure 5. Same as Figure 4, but with T500.  456 

 457 
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