In Press
Haotian Zheng, Shaojie Song, Golam Sarwar, Masao Gen, Shuxiao Wang, Dian Ding, Xing Chang, Shuping Zhang, Jia Xing, Yele Sun, Dongsheng Ji, Chak Chan, Jian Gao, and Michael B. McElroy. In Press. “Contribution of Particulate Nitrate Photolysis to Heterogeneous Sulfate Formation for Winter Haze in China.” Environmental Science & Technology Letters .Abstract
Nitrate and sulfate are two key components of airborne particulate matter (PM). While multiple formation mechanisms have been proposed for sulfate, current air quality models commonly underestimate its concentrations and mass fractions during northern China winter haze events. On the other hand, current models usually overestimate the mass fractions of nitrate. Very recently, laboratory studies have proposed that nitrous acid (N(III)) produced by particulate nitrate photolysis can oxidize sulfur dioxide to produce sulfate. Here, for the first time, we parameterize this heterogeneous mechanism into the state-of-the-art Community Multi-scale Air Quality (CMAQ) model and quantify its contributions to sulfate formation. We find that the significance of this mechanism mainly depends on the enhancement effects (by 1–3 orders of magnitude as suggested by the available experimental studies) of nitrate photolysis rate constants in aerosol liquid water compared to that in the gas phase. Comparisons between model simulations and in-situ observations in Beijing suggest that this pathway can explain about 15% (assuming an enhancement factor (EF) of 10) to 65% (assuming EF = 100) of the model–observation gaps in sulfate concentrations during winter haze. Our study strongly calls for future research on reducing the uncertainty in EF.
Chenghe Guan, Michael Keith, and Andy Hong. In Press. “Designing walkable cities and neighborhoods in the era of urban big data.” Urban Planning International.Abstract
In this paper, we discuss walkable cities from the perspective of urban planning and design in the era of digitalization and urban big data. We start with a brief review on historical walkable cities schemes; followed by a deliberation on what a walkable city is and what the spatial elements of a walkable city are; and a discussion on the emerging themes and empirical methods to measure the spatial and urban design features of a walkable city. The first part of this paper looks at key urban design propositions and how they were proposed to promote walkability. The second part of this paper discusses the concept of walkability, which is fundamental to designing a walkable city. We emphasize both the physical (walkways, adjacent uses, space) and the perceived aspects (safety, comfort, enjoyment), and then we look at the variety of spatial elements constituting a walkable city. The third part of this paper looks at the emerging themes for designing walkable cities and neighborhoods. We discuss the application of urban big data enabled by growing computational powers and related empirical methods and interdisciplinary approaches including spatial planning, urban design, urban ecology, and public health. This paper aims to provide a holistic approach toward understanding of urban design and walkability, re-evaluate the spatial elements to build walkable cities, and discuss future policy interventions.
Tianguang Lu, Peter Sherman, Xinyu Chen, Shi Chen, Xi Lu, and Michael B. McElroy. In Press. “India’s potential for integrating solar and on- and offshore wind power into its energy system.” Nature Communications.
Tianguang Lu, Xinyu Chen, Michael B. McElroy, Chris Nielsen, Wu Qiuwei, and Qian Ai. In Press. “A reinforcement learning-based decision system for electricity pricing plan selection by smart grid end users.” IEEE Transactions on Smart Grid.
Chenghe Guan and Ann Forsyth. In Press. “The influence of urban form and socio-demographics on active transport: a 40 neighborhoods study in Chengdu, China.” Journal of Transport and Land Use .Abstract
In China a centralized planning culture has created similar neighborhoods across the country. Using a survey of 1,048 individuals conducted in 2016 in Chengdu—located in a carefully conceptualized typology of neighborhood forms—we analyzed the associations between individual and neighborhood characteristics and active or non-motorized transport behavior. Using several multiple logistic and multi-level models, we show how neighborhoods were categorized and the number of categories or neighborhood types affected the magnitude of the associations with active transport but not the direction. People taking non-work trips were more likely to use active compared with motorized modes in all neighborhood types. Neighborhood type was significant in models, but so were many other individual-level variables and infrastructural and locational features such as bike lanes and location near the river. Of the 3-D physical environment variables, floor area ratio (a proxy for density) was only significant in one model for non-work trips. Intersection density and dissimilarity (land use diversity) were only significant in a model for work trips. This study shows that to develop strong theories about the connections between active transport and environments, it is important to examine different physical and cultural contexts and perform sensitivity analyses. Research in different parts of China can help provide a more substantial base for evidence-informed policy-making. Planning and design recommendations related to active transport need to consider how neighborhoods, built environments, and personal characteristics interact in different kinds of urban environments.
Cao Jing, Mun S. Ho, and Wenaho Hu. 2020. “Analyzing carbon price policies using a general equilibrium model with household energy demand functions.” In Measuring Economic Growth and Productivity, edited by B Fraumeni, 1st ed. Cambridge, MA: Academic Press. Publisher's VersionAbstract
Multi-sector general equilibrium models are used to simulate the effects of environmental policies on industry output and consumption at disaggregated levels. The specification of household demand in such models often use simpler forms such as CES or Linear Expenditure Systems since there are few estimates of more flexible systems. We estimate a 2-stage translog utility function that explicitly accounts for detailed energy expenditures to allow us to capture the price and income effects more accurately than these simpler forms. We incorporate this into a China growth model to simulate the effects of a carbon price to achieve the government targets for the Climate Change (Paris) agreements.
Final Manuscript in DASH.
An edited volume dedicated to Prof. Dale W. Jorgenson by his students and collaborators.
Meng Gao, Zirui Liu, Bo Zheng, Dongsheng Ji, Peter Sherman, Shaojie Song, Jinyuan Xin, Cheng Liu, Yuesi Wang, Qiang Zhang, Jia Xing, Jingkun Jiang, Zifa Wang, Gregory R. Carmichael, and Michael B. McElroy. 2020. “China's emission control strategies have suppressed unfavorable influences of climate on wintertime PM2.5 concentrations in Beijing since 2002.” Atmospheric Chemistry and Physics, 20, 3, Pp. 1497-1505. Publisher's VersionAbstract
Severe wintertime PM2.5 pollution in Beijing has been receiving increasing worldwide attention, yet the decadal variations remain relatively unexplored. Combining field measurements and model simulations, we quantified the relative influences of anthropogenic emissions and meteorological conditions on PM2.5 concentrations in Beijing over the winters of 2002–2016. Between the winters of 2011 and 2016, stringent emission control measures resulted in a 21 % decrease in mean mass concentrations of PM2.5 in Beijing, with 7 fewer haze days per winter on average. Given the overestimation of PM2.5 by the model, the effectiveness of stringent emission control measures might have been slightly overstated. With fixed emissions, meteorological conditions over the study period would have led to an increase in haze in Beijing, but the strict emission control measures have suppressed the unfavorable influences of the recent climate. The unfavorable meteorological conditions are attributed to the weakening of the East Asia winter monsoon associated particularly with an increase in pressure associated with the Aleutian Low.
Chenghe Guan, Jihoon Song, Michael Keith, Yuki Akiyama, Ryosuke Shibasaki, and Taisei Sato. 2020. “Delineating urban park catchment areas using mobile phone data: A case study of Tokyo.” Computers, Environment and Urban Systems, 81. Publisher's VersionAbstract
Urban parks can offer both physical and psychological health benefits to urban dwellers and provide social, economic, and environmental benefits to society. Earlier research on the usage of urban parks relied on fixed distance or walking time to delineate urban park catchment areas. However, actual catchment areas can be affected by many factors other than park surface areas, such as social capital cultivation, cultural adaptation, climate and seasonal variation, and park function and facilities provided. This study advanced this method by using mobile phone data to delineate urban park catchment area. The study area is the 23 special wards of Tokyo or tokubetsu-ku, the core of the capital of Japan. The location data of over 1 million anonymous mobile phone users was collected in 2011. The results show that: (1) the park catchment areas vary significantly by park surface areas: people use smaller parks nearby but also travel further to larger parks; (2) even for the parks in the same size category, there are notable differences in the spatial pattern of visitors, which cannot be simply summarized with average distance or catchment radius; and (3) almost all the parks, regardless of its size and function, had the highest user density right around the vicinity, exemplified by the density-distance function closely follow a decay trend line within 1-2 km radius of the park. As such, this study used the density threshold and density-distance function to measure park catchment. We concluded that the application of mobile phone location data can improve our understanding of an urban park catchment area, provide useful information and methods to analyze the usage of urban parks, and can aid in the planning and policy-making of urban parks.
Fei Xiao, Tianguang Lu, Qian Ai, Xiaolong Wang, Xinyu Chen, Sidun Fang, and Qiuwei Wu. 2020. “Design and implementation of a data-driven approach to visualizing power quality.” IEEE Transactions on Smart Grid, 114, DOI: 10.1109/TSG.2020.2985767. Publisher's VersionAbstract
Numerous underlying causes of power-quality (PQ) disturbances have enhanced the application of situational awareness to power systems. This application provides an optimal overall response for contingencies. With measurement data acquired by a multi-source PQ monitoring system, we propose an interactive visualization tool for PQ disturbance data based on a geographic information system (GIS). This tool demonstrates the spatio–temporal distribution of the PQ disturbance events and the cross-correlation between PQ records and environmental factors, leveraging Getis statistics and random matrix theory. A methodology based on entity matching is also introduced to analyze the underlying causes of PQ disturbance events. Based on real-world data obtained from an actual power system, offline and online PQ data visualization scenarios are provided to verify the effectiveness and robustness of the proposed framework.
Jing Cao, Mun S. Ho, Wenhao Hu, and Dale Jorgenson. 2020. “Effective Labor Supply and Growth Outlook in China.” China Economic Review, 61, Pp. 101398. Publisher's VersionAbstract
The falling projections of working-age population in China has led to predictions of much slower economic growth. We consider three mechanisms that could contribute to higher effective labor supply growth – further improvement in educational attainment due to cohort replacement and rising college enrollment, improvement in aggregate labor quality due to urbanization, and higher labor force participation due to later retirement. We find that these factors result in a projected growth rate of effective labor input of 0.40% for 2015-2030 compared to -0.60% for working age population. As a result, the projected growth rate of GDP will be 5.80% for 2015-2030 compared to 5.23% if these factors are ignored.
Richard Goettle, Mun S. Ho, and Peter Wilcoxen. 2020. “Emissions accounting and carbon tax incidence in CGE models: bottom-up versus top-down.” In Measuring Economic Growth and Productivity: Foundations, KLEMS Production Models, and Extensions, edited by Fraumeni, B, 1st ed. Cambridge, MA: Academic Press. Publisher's VersionAbstract
Multi-sector general equilibrium models are the work-horses used to analyze the impact of carbon prices in climate policy discussions. Such models often have distinct industries to represent coal, liquid fuels, and gas production where the output over time is represented by quantity and price indexes. The industries that buy these fuels, however, do not use a common homogenous quantity (e.g., steam coal vs. metallurgical coal) and have distinct purchasing price indexes. In accounting for energy use or CO2 emissions, modelers choose to attach coefficients either bottom-up to a sector specific input index or top-down to an average output index and this choice has a direct bearing on the incidence of carbon taxation. We discuss how different accounting methods for the differences in prices can have a large effect on the simulated impact of carbon prices. We emphasize the importance for modelers to be explicit about their methods.
An edited volume dedicated to Prof. Dale W. Jorgenson by his students and collaborators.  Final Manuscript in DASH
Jing Cao, Mun S. Ho, Wenhao Hu, and Dale W. Jorgensen. 2020. “Estimating flexible consumption functions for urban and rural households in China.” China Economic Review, 61, Pp. 101453. Publisher's VersionAbstract
There are few comprehensive studies of household consumption in China due to data restrictions. This prevents the calculation of inequality indices based on consumption. Secondly, this makes a comprehensive analysis of policies that affect consumption difficult; economy-wide models used for analysis often have to employ simple consumption forms with unit income elasticities. We estimate a translog demand system distinguished by demographic characteristics, giving price and income elasticities that should be useful for policy analysis. We estimate separate functions for urban and rural households using household expenditure data and detailed commodity prices (1995-2006). This allows future analysis of social welfare and inequality based on consumption to supplement existing studies based on income. To illustrate an application of the model, we project consumption composition based on projected prices, incomes and demographic changes – aging, education improvement and urbanization.
Archana Dayalu, J. William Munger, Yuxuan Wang, Yu Zhao, Thomas Nehrkorn, Chris P. Nielsen, Michael B. McElroy, and Rachel Chang. 2020. “Evaluating China's anthropogenic CO2 emissions inventories: a northern China case study using continuous surface observations from 2005 to 2009.” Atmospheric Chemistry and Physics. Publisher's VersionAbstract
China has pledged reduction of carbon dioxide (CO2) emissions per unit of gross domestic product (GDP) by 60 %–65 % relative to 2005 levels, and to peak carbon emissions overall by 2030. However, the lack of observational data and disagreement among the many available inventories makes it difficult for China to track progress toward these goals and evaluate the efficacy of control measures. To demonstrate the value of atmospheric observations for constraining CO2 inventories we track the ability of CO2 concentrations predicted from three different CO2 inventories to match a unique multi-year continuous record of atmospheric CO2. Our analysis time window includes the key commitment period for the Paris Agreement (2005) and the Beijing Olympics (2008). One inventory is China-specific and two are spatial subsets of global inventories. The inventories differ in spatial resolution, basis in national or subnational statistics, and reliance on global or China-specific emission factors. We use a unique set of historical atmospheric observations from 2005 to 2009 to evaluate the three CO2 emissions inventories within China's heavily industrialized and populated northern region accounting for ∼33 %–41 % of national emissions. Each anthropogenic inventory is combined with estimates of biogenic CO2 within a high-resolution atmospheric transport framework to model the time series of CO2 observations. To convert the model–observation mismatch from mixing ratio to mass emission rates we distribute it over a region encompassing 90 % of the total surface influence in seasonal (annual) averaged back-trajectory footprints (L_0.90 region). The L_0.90 region roughly corresponds to northern China. Except for the peak growing season, where assessment of anthropogenic emissions is entangled with the strong vegetation signal, we find the China-specific inventory based on subnational data and domestic field studies agrees significantly better with observations than the global inventories at all timescales. Averaged over the study time period, the unscaled China-specific inventory reports substantially larger annual emissions for northern China (30 %) and China as a whole (20 %) than the two unscaled global inventories. Our results, exploiting a robust time series of continuous observations, lend support to the rates and geographic distribution in the China-specific inventory Though even long-term observations at a single site reveal differences among inventories, exploring inventory discrepancy over all of China requires a denser observational network in future efforts to measure and verify CO2 emissions for China both regionally and nationally. We find that carbon intensity in the northern China region has decreased by 47 % from 2005 to 2009, from approximately 4 kg of CO2 per USD (note that all references to USD in this paper refer to USD adjusted for purchasing power parity, PPP) in 2005 to about 2 kg of CO2 per USD in 2009 (Fig. 9c). However, the corresponding 18 % increase in absolute emissions over the same time period affirms a critical point that carbon intensity targets in emerging economies can be at odds with making real climate progress. Our results provide an important quantification of model–observation mismatch, supporting the increased use and development of China-specific inventories in tracking China's progress as a whole towards reducing emissions. We emphasize that this work presents a methodology for extending the analysis to other inventories and is intended to be a comparison of a subset of anthropogenic CO2 emissions rates from inventories that were readily available at the time this research began. For this study's analysis time period, there was not enough spatially distinct observational data to conduct an optimization of the inventories. The primary intent of the comparisons presented here is not to judge specific inventories, but to demonstrate that even a single site with a long record of high-time-resolution observations can identify major differences among inventories that manifest as biases in the model–data comparison. This study provides a baseline analysis for evaluating emissions from a small but important region within China, as well a guide for determining optimal locations for future ground-based measurement sites.
Peter Sherman, Eli Tziperman, Clara Deser, and Michael B. McElroy. 2020. “Historical and future roles of internal atmospheric variability in modulating summertime Greenland Ice Sheet melt.” Geophysical Research Letters, 47, 6. Publisher's VersionAbstract
Understanding how internal atmospheric variability affects Greenland Ice Sheet (GrIS) summertime melting would improve understanding of future sea level rise. We analyze the Community Earth System Model Large Ensemble (CESM‐LE) over 1951‐2000 and 2051‐2100. We find that internal variability dominates the forced response on short timescales (~20 years) and that the area impacted by internal variability grows in the future, connecting internal variability and climate change. Unlike prior studies, we do not assume specific patterns of internal variability to affect GrIS melting, but derive them from Maximum Covariance Analysis. We find that the North Atlantic Oscillation (NAO) is the major source of internal atmospheric variability associated with GrIS melt conditions in CESM‐LE and reanalysis, with the positive phase (NAO+) linked to widespread cooling over the ice sheet. CESM‐LE and CMIP5 project an increase in the frequency of NAO+ events, suggesting a negative feedback to the GrIS under future climate change.
Chenghe Guan, Jialin Liu, Sumeeta Srinivasan, Bo Zhang, Liangjun Da, and Chris P. Nielsen. 2020. “The influence of neighborhood types on active transport in China’s growing cities.” Transportation Research Part D: Transport and Environment, 80, 102273. Publisher's VersionAbstract
Rapid urban expansion in China has created both opportunities and challenges for promoting active transport in urban residential communities. Previous studies have shown that the urban form at the city scale has affected active transport in Chinese cities. However, there is less agreement about how the physical and social variations of neighborhood types should be addressed. This research investigates the four most representative neighborhood types found in Chinese cities: traditional mixed-use, slab block work-unit, gated community, and resettlement housing. Household travel diaries conducted in Chengdu in 2016 were analyzed using binary logistic regressions, supplemented by informal onsite interviews. The findings indicate significant variations in the use and accessibility of active transport in each neighborhood type for non-work trips. This suggests that each neighborhood type may need different strategies for promoting active transport: (1) the traditional mixed-use neighborhoods are in need of intensified urban retrofitting projects to reclaim public open space; (2) the work-unit could benefit from comprehensive plans rather than a patchwork of projects; (3) while opening up gated communities can improve porosity across neighborhoods and promote active transport, the more pressing issue may be their inability to keep up with the transportation needs of the residents; and (4) residents of resettlement housing should have better access to employment using transit and non-motorized modes.
Xueli Zhao, Xiaofang Wu, Chenghe Guan, Rong Ma, Chris P. Nielsen, and Bo Zhang. 2020. “Linking agricultural GHG emissions to global trade network.” Earth's Future, 8, 3. Publisher's VersionAbstract
As part of the climate policy to meet the 2‐degrees Celsius (2 °C) target, actions in all economic sectors, including agriculture, are required to mitigate global greenhouse gas (GHG) emissions. While there has been an ever‐increasing focus on agricultural greenhouse gas (AGHG) emissions, limited attention has been paid to their economic drivers in the globalized world economy and related mitigation potentials. This paper makes a first attempt to trace AGHG emissions via global trade networks using a multi‐regional input‐output model and a complex network model. Over one third of global AGHG emissions in 2012 can be linked with products traded internationally, of which intermediate trade and final trade contribute 64.2% and 35.8%, respectively. Japan, the USA, Germany, the UK, and Hong Kong are the world's five largest net importers of embodied emissions, while Ethiopia, Australia, Pakistan, India and Argentina are the five largest net exporters. Some hunger‐afflicted developing countries in Asia and Africa are important embodied emission exporters, due to their large‐scale exports of agricultural products. Trade‐related virtual AGHG emission transfers shape a highly heterogenous network, due to the coexistence of numerous peripheral economies and a few highly‐connected hub economies. The network clustering structure is revealed by the regional integration of several trading communities, while hub economies are collectors and distributors in the global trade network, with important implications for emission mitigation. Achieving AGHG emission reduction calls for a combination of supply‐ and demand‐side policies covering the global trade network.
Mun Ho, Wolfgang Britz, Ruth Delzeit, Florian Leblanc, Roson Roberto, Franziska Schuenemann, and Matthias Weitzel. 2020. “Modelling consumption and constructing long-term baselines in final demand.” Journal of Global Economic Analysis, 5. Publisher's VersionAbstract
Modelling and projecting consumption, investment and government demand by detailed commodities in CGE models poses many data and methodological challenges. We review the state of knowledge of modelling consumption of commodities (price and income elasticities and demographics), as well as the historical trends that we should be able to explain. We then discuss the current approaches taken in CGE models to project the trends in demand at various levels of commodity disaggregation. We examine the pros and cons of the various approaches to adjust parameters over time or using functions of time and suggest a research agenda to improve modelling and projection. We compare projections out to 2050 using LES, CES and AIDADS functions in the same CGE model to illustrate the size of the differences. In addition, we briefly discuss the allocation of total investment and government demand to individual commodities.
Peter Sherman, Xinyu Chen, and Michael B. McElroy. 2020. “Offshore wind: an opportunity for cost-competitive decarbonization of China’s energy economy.” Science Advances, 6, 8, Pp. eaax9571.Abstract
China has reduced growth in its emissions of greenhouse gases, success attributable in part due to major investments in onshore wind. By comparison, investments in offshore wind have been minor, limited until recently largely by perceptions of cost. Assimilated meteorological data are used here to assess future offshore wind potential for China. Analysis on a provincial basis indicates that the aggregate potential wind resource is 5.4 times larger than current coastal demand for power. Recent experiences with markets both in Europe and the US suggest that potential offshore resources in China could be exploited to cost-competitively provide 1148.3 TWh of energy in a high-cost scenario, 6383.4 TWh in a low-cost option, equivalent to between 36% and 200% of the total coastal energy demand post 2020. The analysis underscores significant benefits for offshore wind for China, with prospects for major reductions greenhouse emissions with ancillary benefits for air quality.
Meng Gao, Jinhui Gao, Bin Zhu, Rajesh Kumar, Xiao Lu, Shaojie Song, Yuzhong Zhang, Beixi Jia, Peng Wang, Gufran Beig, Jianlin Hu, Qi Ying, Hongliang Zhang, Peter Sherman, and Michael B. McElroy. 2020. “Ozone pollution over China and India: seasonality and sources.” Atmospheric Chemistry and Physics, 20, 7, Pp. 4399-4414.Abstract
A regional fully coupled meteorology–chemistry model, Weather Research and Forecasting model with Chemistry (WRF-Chem), was employed to study the seasonality of ozone (O3) pollution and its sources in both China and India. Observations and model results suggest that O3 in the North China Plain (NCP), Yangtze River Delta (YRD), Pearl River Delta (PRD), and India exhibit distinctive seasonal features, which are linked to the influence of summer monsoons. Through a factor separation approach, we examined the sensitivity of O3 to individual anthropogenic, biogenic, and biomass burning emissions. We found that summer O3 formation in China is more sensitive to industrial and biogenic sources than to other source sectors, while the transportation and biogenic sources are more important in all seasons for India. Tagged simulations suggest that local sources play an important role in the formation of the summer O3 peak in the NCP, but sources from Northwest China should not be neglected to control summer O3 in the NCP. For the YRD region, prevailing winds and cleaner air from the ocean in summer lead to reduced transport from polluted regions, and the major source region in addition to local sources is Southeast China. For the PRD region, the upwind region is replaced by contributions from polluted PRD as autumn approaches, leading to an autumn peak. The major upwind regions in autumn for the PRD are YRD (11 %) and Southeast China (10 %). For India, sources in North India are more important than sources in the south. These analyses emphasize the relative importance of source sectors and regions as they change with seasons, providing important implications for O3 control strategies.
Jialin Liu, Fangyan Cheng, J. William Munger, Timothy G. Whitby, Peng Jiang, Siyue Chen, Weiwen Ji, and Xiuling Man. 2020. “Precipitation extremes influence patterns and partitioning of evapotranspiration and transpiration in a deciduous boreal larch forest.” Agricultural and Forest Meteorology, 287, 107936. Publisher's VersionAbstract


Ecosystems at the margins of their zone could be amongst the first to experience significant shifts in structure and function. At this site there have already been signs of permafrost degradation and more frequent temperature and precipitation anomalies. The canopy-dominant larch accounted for half the total T fluxes. The remaining 50% was distributed evenly among intermediate and suppressed trees. T is the dominant subcomponent in ET, where overall T/ET varies of 66%–84% depending on precipitation patterns. In dormant and early growing seasons, T still constitutes a majority of ET even though the canopy foliage is not fully developed because cold soil creates a negative soil to air vapor pressure gradient that impedes evaporation. However, in the peak growing season, excess precipitation reduces T while providing sufficient wetness for surface evaporation. ET from standard data product based on MODIS satellite reflectance underestimates tower ET by 17%–29%. Solar-induced chlorophyll fluorescence measured by satellite is well correlated with tower ET (r2 = 0.69–0.73) and could provide a better basis for regional ET extrapolations. Sites along boreal ecotones are critical to observe for signs of shifts in their structure, function, and response to climate anomalies.