鲁玺 Xi Lu

2022
Ziwen Ruan, Xi Lu, Shuxiao Wang, Jia Xing, Wei Wang, Dan Chen, Chris P. Nielsen, Yong Luo, Kebin He, and Jiming Hao. 2022. “Impacts of large-scale deployment of mountainous wind farms on wintertime regional air quality in the Beijing-Tian-Hebei area.” Atmospheric Environment, 278, June, Pp. 119074. Publisher's VersionAbstract
The development of wind power plays an essential role in achieving China's carbon neutrality goals and air quality standards. A large number of studies have addressed the benefits of substituting fossil fuels with wind power on climate and air quality (defined as indirect impact) by macro-scale methodology. In recent years, more and more researchers have discussed its impacts on the general atmospheric circulation and air pollution dispersion (defined as direct impact) by parameterizing wind energy extraction in meso-micro scale models. However, the comprehensive investigation (considering both direct and indirect impacts) of the utilization of wind power on atmosphere environmental impacts remains vacant. Our study first evaluated both the direct and indirect impacts of wind power on air quality through an integrated methodological framework by using WRF-CMAQ system. The present analysis took wind farms located in Zhangjiakou to explore their impacts on air quality in winter, particularly over the downwind Beijing municipal area in the North China Plain. Results indicated that the deployment of wind power leads to spatially mixed direct impacts on PM2.5 concentrations in Beijing with a monthly net increase of 0.067 μg/m3 (0.08%) relative to the regional average. Contrarily, the substitution of coal-burning with wind power in rural household heating would result in notable indirect benefits to monthly PM2.5 concentrations in Beijing, specifically, reducing emissions of CO2 and conventional air pollutants by 64% in rural heating sector. The combined impacts of wind power displayed regional differences: in the wintertime (January), Zhangjiakou PM2.5 concentrations increased (+0.147 μg/m3) whereas, decreases are achieved (−5.642 μg/m3) in Beijing. Therefore, to support the large-scale deployment of wind power, future energy policies should take comprehensive account of the diverse environmental impacts, including both the indirect benefits of fossil energy substitution and the potential direct atmospheric effects on regional air quality.
Zhenyu Zhuo, Ershun Du, Ning Zhang, Chris Nielsen, Xi Lu, Jinyu Xiao, Jiawei Wu, and Chongqing Kang. 2022. “Cost Increase in the Electricity Supply to Achieve Carbon Neutrality in China.” Nature Communications, 13. Publisher's VersionAbstract
The Chinese government has set long-term carbon neutrality and renewable energy (RE) development goals for the power sector. Despite a precipitous decline in the costs of RE technologies, the external costs of renewable intermittency and the massive investments in new RE capacities would increase electricity costs. Here, we develop a power system expansion model to comprehensively evaluate changes in the electricity supply costs over a 30-year transition to carbon neutrality. RE supply curves, operating security constraints, and the characteristics of various generation units are modelled in detail to assess the cost variations accurately. According to our results, approximately 5.8 TW of wind and solar photovoltaic capacity would be required to achieve carbon neutrality in the power system by 2050. The electricity supply costs would increase by 9.6 CNY¢/kWh. The major cost shift would result from the substantial investments in RE capacities, flexible generation resources, and network expansion.
Shaojie Song, Haiyang Lin, Peter Sherman, Xi Yang, Shi Chen, Xi Lu, Tianguang Lu, Xinyu Chen, and Michael B. McElroy. 2022. “Decarbonization of the Indian economy: 2050 prospects for wind, solar, and green hydrogen.” iScience, 25, 6, Pp. 104399. Publisher's VersionAbstract
The paper explores options for a 2050 carbon free energy future for India. Onshore wind and solar sources are projected as the dominant primary contributions to this objective. The analysis envisages an important role for so-called green hydrogen produced by electrolysis fueled by these carbon free energy sources. This hydrogen source can be used to accommodate for the intrinsic variability of wind and solar complementing opportunities for storage of power by batteries and pumped hydro. The green source of hydrogen can be used also to supplant current industrial uses of gray hydrogen produced in the Indian context largely from natural gas with important related emissions of CO2. The paper explores further options for use of green hydrogen to lower emissions from otherwise difficult to abate sectors of both industry and transport. The analysis is applied to identify the least cost options to meet India’s zero carbon future.
Shi Chen, Xi Lu, Chris P. Nielsen, Guannan Geng, Michael B. McElroy, Shuxiao Wang, and Jiming Hao. 2022. “Improved air quality in China can enhance solar power performance and accelerate carbon neutrality targets.” One Earth. Publisher's Version
2021
Xi Lu, Chris P. Nielsen, Chongyu Zhang, Jiacong Li, Xu He, Ye Wu, Shuxiao Wang, Feng Song, Chu Wei, Kebin He, Michael P. McElroy, and Jiming Hao. 2021. “Combined solar power and storage as cost-competitive and grid-compatible supply for China’s future carbon-neutral electricity system.” Proceedings of the National Academy of Sciences, 118, October, Pp. 42. Publisher's VersionAbstract
As the world’s largest CO2 emitter, China’s ability to decarbonize its energy system strongly affects the prospect of achieving the 1.5 °C limit in global, average surface-temperature rise. Understanding technically feasible, cost-competitive, and grid-compatible solar photovoltaic (PV) power potentials spatiotemporally is critical for China’s future energy pathway. This study develops an integrated model to evaluate the spatiotemporal evolution of the technology-economic-grid PV potentials in China during 2020 to 2060 under the assumption of continued cost degression in line with the trends of the past decade. The model considers the spatialized technical constraints, up-to-date economic parameters, and dynamic hourly interactions with the power grid. In contrast to the PV production of 0.26 PWh in 2020, results suggest that China’s technical potential will increase from 99.2 PWh in 2020 to 146.1 PWh in 2060 along with technical advances, and the national average power price could decrease from 4.9 to 0.4 US cents/kWh during the same period. About 78.6% (79.7 PWh) of China’s technical potential will realize price parity to coal-fired power in 2021, with price parity achieved nationwide by 2023. The cost advantage of solar PV allows for coupling with storage to generate cost-competitive and grid-compatible electricity. The combined systems potentially could supply 7.2 PWh of grid-compatible electricity in 2060 to meet 43.2% of the country’s electricity demand at a price below 2.5 US cents/kWh. The findings highlight a crucial energy transition point, not only for China but for other countries, at which combined solar power and storage systems become a cheaper alternative to coal-fired electricity and a more grid-compatible option.
Lu et al. is the cover article of this October issue of PNAS. Read the Research Brief.
Minghao Zhuang, Xi Lu, Wei Peng, Yanfen Wang, Jianxiao Wang, Chris P. Nielsen, and Michael B. McElroy. 2021. “Opportunities for household energy on the Qinghai-Tibet Plateau in line with United Nations’ Sustainable Development Goals.” Renewable and Sustainable Energy Reviews, 144, July 2021, Pp. 110982. Publisher's VersionAbstract
Approximately seven million population in the Qinghai-Tibet Plateau of China, a global climate sensitive region, still rely primarily on yak dung for household cooking and heating. The treatment and combustion of yak dung result in a variety of negative impacts in terms of local alpine grassland degradation, indoor air pollution, public health risk, as well as global climate change. There is an urgent need to explore alternative pathway for affordable and clean energy as indicated in the United Nations’ Sustainable Development Goals for 2030. This perspective has analyzed the key challenges rooted in yak dung use on the Qinghai-Tibet Plateau region. Based on this, this perspective has further proposed a new complementary energy system to take advantage of locally available, clean and sustainable energy sources of wind and solar power, and have provided economic analyses. Meanwhile, this perspective has pointed out the potential barriers to promoting the new complementary energy system in the Qinghai-Tibet Plateau region due to traditional habits, economic factors and policies. Finally, strategies for transitioning from yak dung to the proposed alternative energy system is discussed at the end. Successful energy transition for the Qinghai-Tibet Plateau region offers an important option to achieving many other sustainable development goals related to climate change, economic development, and environment. The perspective is expected to shed light on the development of sustainable energy in other developing region or countries in the world to address multiple societal goals.
Qing Yang, Hewen Zhou, Pietro Bartocci, Francesco Fantozzi, Ondřej Mašek, Foster Agblevor, Zhiyu Wei, Haiping Yang, Hanping Chen, Xi Lu, Guoqing Chen, Chuguang Zheng, Chris P. Nielsen, and Michael B. McElroy. 2021. “Prospective contributions of biomass pyrolysis to China’s 2050 carbon reduction and renewable energy goals.” Nature Communications. Publisher's VersionAbstract
Deployment of negative emission technologies needs to start immediately if we are to avoid overshooting international carbon targets, reduce negative climate impacts, and minimize costs of emission mitigation. Actions in China, given its importance for the global anthropogenic carbon budget, can be decisive. While bioenergy with carbon capture and storage (BECCS) may need years to mature, this study focuses on developing a ready-to-implement biomass intermediate pyrolysis poly-generation (BIPP) technology to produce a potentially stable form of biochar, a medium for carbon storage, and to provide a significant source of valuable biofuels, especially pyrolysis gas. Combining the experimental data with hybrid models, the results show that a BIPP system can be profitable without subsidies: its national deployment could contribute to a 68% reduction of carbon emissions per unit of GDP in 2030 compared to 2005 and could result additionally in a reduction in air pollutant emissions. With 73% of national crop residues converted to biochar and other biofuels in the near term (2020 to 2030), the cumulative greenhouse gas (GHG) reduction could reach up to 5653 Mt CO2-eq by 2050, which could contribute 9-20% of the global GHG emission reduction goal for BECCS (28-65 Gt CO2-eq in IPCC’s 1.5 °C pathway), and nearly 2633 Mt more than that projected for BECCS alone. The national BIPP development strategy is developed on a provincial scale based on a regional economic and life-cycle analysis. 
2020
Tianguang Lu, Peter Sherman, Xinyu Chen, Shi Chen, Xi Lu, and Michael B. McElroy. 2020. “India’s potential for integrating solar and on- and offshore wind power into its energy system.” Nature Communications, 11, 4750. Publisher's VersionAbstract
This paper considers options for a future Indian power economy in which renewables, wind and solar, could meet 80% of anticipated 2040 power demand supplanting the country’s current reliance on coal. Using a cost optimization model, here we show that renewables could provide a source of power cheaper or at least competitive with what could be supplied using fossil-based alternatives. The ancillary advantage would be a significant reduction in India’s future power sector related emissions of CO2. Using a model in which prices for wind turbines and solar PV systems are assumed to continue their current decreasing trend, we conclude that an investment in renewables at a level consistent with meeting 80% of projected 2040 power demand could result in a reduction of 85% in emissions of CO2 relative to what might be expected if the power sector were to continue its current coal dominated trajectory.
2019
China’s CO2 peak before 2030 implied from diverse characteristics and growth of cities
Haikun Wang, Xi Lu, Yu Deng, Yaoguang Sun, Chris P. Nielsen, Yifan Liu, Ge Zhu, Maoliang Bu, Jun Bi, and Michael B. McElroy. 2019. “China’s CO2 peak before 2030 implied from diverse characteristics and growth of cities.” Nature Sustainability, 2, Pp. 748–754. Publisher's VersionAbstract
China pledges to peak CO2 emissions by 2030 or sooner under the Paris Agreement to limit global warming to 2 °C or less by the end of the century. By examining CO2 emissions from 50 Chinese cities over the period 2000–2016, we found a close relationship between per capita emissions and per capita gross domestic product (GDP) for individual cities, following the environmental Kuznets curve, despite diverse trajectories for CO2 emissions across the cities. Results show that carbon emissions peak for most cities at a per capita GDP (in 2011 purchasing power parity) of around US$21,000 (80% confidence interval: US$19,000 to 22,000). Applying a Monte Carlo approach to simulate the peak of per capita emissions using a Kuznets function based on China’s historical emissions, we project that emissions for China should peak at 13–16 GtCO2 yr−1 between 2021 and 2025, approximately 5–10 yr ahead of the current Paris target of 2030. We show that the challenges faced by individual types of Chinese cities in realizing low-carbon development differ significantly depending on economic structure, urban form and geographical location.
Xi Lu, Liang Cao, Haikun Wang, Wei Peng, Jia Xing, Shuxiao Wang, Siyi Cai, Bo Shen, Qing Yang, Chris P. Nielsen, and Michael B. McElroy. 2019. “Gasification of coal and biomass as a net carbon-negative power source for environment-friendly electricity generation in China.” Proceedings of the National Academy of Sciences, 116, 17, Pp. 8206-8213. Publisher's VersionAbstract
Realizing the goal of the Paris Agreement to limit global warming to 2 °C by the end of this century will most likely require deployment of carbon-negative technologies. It is particularly important that China, as the world’s top carbon emitter, avoids being locked into carbon-intensive, coal-fired power-generation technologies and undertakes a smooth transition from high- to negative-carbon electricity production. We focus here on deploying a combination of coal and biomass energy to produce electricity in China using an integrated gasification cycle system combined with carbon capture and storage (CBECCS). Such a system will also reduce air pollutant emissions, thus contributing to China’s near-term goal of improving air quality. We evaluate the bus-bar electricity-generation prices for CBECCS with mixing ratios of crop residues varying from 0 to 100%, as well as associated costs for carbon mitigation and cobenefits for air quality. We find that CBECCS systems employing a crop residue ratio of 35% could produce electricity with net-zero life-cycle emissions of greenhouse gases, with a levelized cost of electricity of no more than 9.2 US cents per kilowatt hour. A carbon price of approximately $52.0 per ton would make CBECCS cost-competitive with pulverized coal power plants. Therefore, our results provide critical insights for designing a CBECCS strategy in China to harness near-term air-quality cobenefits while laying the foundation for achieving negative carbon emissions in the long run.
PNAS paper.pdf
The potential of photovoltaics to power the Belt and Road Initiative
Shi Chen, Xi Lu, Yufei Miao, Yu Deng, Chris P. Nielsen, Noah Elbot, Yuanchen Wang, Kathryn G. Logan, Michael B. McElroy, and Jiming Hao. 2019. “The potential of photovoltaics to power the Belt and Road Initiative.” Joule, 3, Pp. 1-18. Publisher's VersionAbstract
Construction of carbon-intensive energy infrastructure is well underway under the Belt & Road Initiative (BRI), challenging the global climate target. Regionally abundant solar power could provide an alternative for electricity generation. An integrative spatial model was developed to evaluate the technical potential of solar photovoltaic power. The influence of impacting factors was quantified systematically on an hourly basis. Results suggest that the electricity potential for the BRI region reaches 448.9 PWh annually, 41.3 times the regional demand for electricity in 2016. Tapping 3.7% of the potential through deploying 7.8 TW capacity could satisfy the regional electricity demand projected for 2030, requiring an investment of approximately 11.2 trillion 2017 USD and a commitment in land area of 88,426 km2, approximately 0.9% of China’s total. Countries endowed with 70.7% of the overall potential consume only 30.1% of regional electricity. The imbalance underscores the advantage of regional cooperation and investments in interconnected grids.
graphic summary Joule paper
2018
Qing Yang, Hewen Zhou, Xiaoyan Zhang, Chris P. Nielsen, Jiashuo Li, Xi Lu, Haiping Yang, and Hanping Chen. 2018. “Hybrid life-cycle assessment for energy consumption and greenhouse gas emissions of a typical biomass gasification power plant in China.” Journal of Cleaner Production, 205, Pp. 661-671. Publisher's VersionAbstract

Among biomass energy technologies which are treated as the promising way to mitigate critical energy crisis and global climate change, biomass gasification plays a key role given to its gaseous fuels especially syngas for distributed power plant. However, a system analysis for the energy saving and greenhouse gas emissions abatement potentials of gasification system has been directed few attentions. This study presents a system analysis that combines process and input-output analyses of GHG emissions and energy costs throughout the full chain of activities associated with biomass gasification. Incorporating agricultural production, industrial process and wastewater treatment which is always ignored, the energy inputs in life cycle are accounted for the first commercial biomass gasification power plant in China. Results show that the non-renewable energy cost and GHG emission intensity of the biomass gasification system are 0.163 MJ/MJ and 0.137 kg CO2-eq/MJ respectively, which reaffirm its advantages over coal-fired power plants in clean energy and environmental terms. Compared with other biomass energy processes, gasification performs well as its non-renewable energy cost and CO2 intensity are in the central ranges of those for all of these technologies. Construction of the plant is an important factor in the process’s non-renewable energy consumption, contributing about 44.48% of total energy use. Wastewater treatment is the main contributor to GHG emissions. The biomass gasification and associated wastewater treatment technologies have critical influence on the sustainability and renewability of biomass gasification. The results provide comprehensive analysis for biomass gasification performance and technology improvement potential in regulating biomass development policies for aiming to achieve sustainability globally.

 

2017
Xi Lu and Michael B. McElroy. 2017. “Global potential for wind generated electricity.” In Wind Energy Engineering: A Handbook for Onshore and Offshore Wind Turbines, edited by Trevor M. Letcher. Amsterdam: Elsevier. Publisher's VersionAbstract

Wind Energy Engineering: A Handbook for Onshore and Offshore Wind Turbines is the most advanced, up-to-date and research-focused text on all aspects of wind energy engineering. Wind energy is pivotal in global electricity generation and for achieving future essential energy demands and targets. In this fast moving field this must-have edition starts with an in-depth look at the present state of wind integration and distribution worldwide, and continues with a high-level assessment of the advances in turbine technology and how the investment, planning, and economic infrastructure can support those innovations.

Each chapter includes a research overview with a detailed analysis and new case studies looking at how recent research developments can be applied. Written by some of the most forward-thinking professionals in the field and giving a complete examination of one of the most promising and efficient sources of renewable energy, this book is an invaluable reference into this cross-disciplinary field for engineers.

Haikun Wang, Yanxu Zhang, Xi Lu, Weimo Zhu, Chris P. Nielsen, Jun Bi, and Michael B. McElroy. 2017. “Trade‐driven relocation of air pollution and health impacts in China.” Nature Communications, 8, 738. Publisher's VersionAbstract
Recent studies show that international trade affects global distributions of air pollution andpublic health. Domestic interprovincial trade has similar effects within countries, but has notbeen comprehensively investigated previously. Here we link four models to evaluate theeffects of both international exports and interprovincial trade on PM2.5pollution and publichealth across China. We show that 50–60% of China’s air pollutant emissions in 2007 wereassociated with goods and services consumed outside of the provinces where they wereproduced. Of an estimated 1.10 million premature deaths caused by PM2.5pollutionthroughout China, nearly 19% (208,500 deaths) are attributable to international exports. Incontrast, interprovincial trade leads to improved air quality in developed coastal provinceswith a net effect of 78,500 avoided deaths nationwide. However, both international exportand interprovincial trade exacerbate the health burdens of air pollution in China’s lessdeveloped interior provinces. Our results reveal trade to be a critical but largely overlookedconsideration in effective regional air quality planning for China.
2016
Challenges faced by China compared with the US in developing wind power
Xi Lu, Michael B. McElroy, Wei Peng, Shiyang Liu, Chris P. Nielsen, and Haikun Wang. 2016. “Challenges faced by China compared with the US in developing wind power.” Nature Energy, 1, 6. Publisher's VersionAbstract

In the 21st Conference of the Parties to the UNFCCC held in Paris in December 2015, China pledged to peak its carbon emissions and increase non-fossil energy to 20% by 2030 or earlier. Expanding renewable capacity, especially wind power, is a central strategy to achieve these climate goals. Despite greater capacity for wind installation in China compared to the US (145.1 versus 75.0 GW), less wind electricity is generated in China (186.3 versus 190.9 TWh). Here, we quantify the relative importance of the key factors accounting for the unsatisfactory performance of Chinese wind farms. Different from the results in earlier qualitative studies, we find that the difference in wind resources explains only a small fraction of the present China-US difference in wind power output (17.9% in 2012); the curtailment of wind power, differences in turbine quality, and delayed connection to the grid are identified as the three primary factors (respectively 49.3%, 50.2%, and 50.3% in 2012). Improvements in both technology choices and the policy environment are critical in addressing these challenges. 

Final Manuscript in DASH
Lu et al. is the cover article of this issue of Nature Energy. It is also subject of a "News and Views" commentary in the same issue, by Joanna I. Lewis.

Rong Xie, Clive E. Sabel, Xi Lu, Weimo Zhu, Haidong Kan, Chris P. Nielsen, and Haikun Wang. 2016. “Long-term trend and spatial pattern of PM2.5-induced premature mortality in China.” Environment International, 97, Pp. 180-186. Publisher's VersionAbstract

With rapid economic growth, China has witnessed increasingly frequent and severe haze and smog episodes over the past decade, posing serious health impacts to the Chinese population, especially those in densely populated city clusters. Quantification of the spatial and temporal variation of health impacts attributable to ambient fine particulate matter (PM2.5) has important implications for China's policies on air pollution control. In this study, we evaluated the spatial distribution of premature deaths in China between 2000 and 2010 attributable to ambient PM2.5 in accord with the Global Burden of Disease based on a high resolution population density map of China, satellite retrieved PM2.5 concentrations, and provincial health data. Our results suggest that China's anthropogenic ambient PM2.5 led to 1,255,400 premature deaths in 2010, 42% higher than the level in 2000. Besides increased PM2.5 concentration, rapid urbanization has attracted large population migration into the more developed eastern coastal urban areas, intensifying the overall health impact. In addition, our analysis implies that health burdens were exacerbated in some developing inner provinces with high population density (e.g. Henan, Anhui, Sichuan) because of the relocation of more polluting and resource-intensive industries into these regions. In order to avoid such national level environmental inequities, China's regulations on PM2.5 should not be loosened in inner provinces. Furthermore policies should create incentive mechanisms that can promote transfer of advanced production and emissions control technologies from the coastal regions to the interior regions.

Meiyu Guo, Xi Lu, Chris P. Nielsen, Michael B. McElroy, Wenrui Shi, Yuntian Chen, and Xuan Yu. 2016. “Prospects for shale gas production in China: Implications for water demand.” Renewable and Sustainable Energy Reviews, 66, December, Pp. 742-750. Publisher's VersionAbstract

Development of shale gas resources is expected to play an important role in China's projected transition to a low-carbon energy future. The question arises whether the availability of water could limit this development. The paper considers a range of scenarios to define the demand for water needed to accommodate China's projected shale gas production through 2020. Based on data from the gas field at Fuling, the first large-scale shale gas field in China, it is concluded that the water intensity for shale gas development in China (water demand per unit lateral length) is likely to exceed that in the US by about 50%. Fuling field would require a total of 39.9–132.9 Mm3 of water to achieve full development of its shale gas, with well spacing assumed to vary between 300 and 1000 m. To achieve the 2020 production goal set by Sinopec, the key Chinese developer, water consumption is projected to peak at 7.22 Mm3 in 2018. Maximum water consumption would account for 1% and 3%, respectively, of the available water resource and annual water use in the Fuling district. To achieve China's nationwide shale gas production goal set for 2020, water consumption is projected to peak at 15.03 Mm3 in 2019 in a high-use scenario. It is concluded that supplies of water are adequate to meet demand in Fuling and most projected shale plays in China, with the exception of localized regions in the Tarim and Jungger Basins.

Ning Zhang, Xi Lu, Chris P Nielsen, Michael B. McElroy, Xinyu Chen, Yu Deng, and Chongqing Kang. 2016. “Reducing curtailment of wind electricity in China by employing electric boilers for heat and pumped hydro for energy storage.” Applied Energy, 184, Pp. 987-994. Publisher's VersionAbstract

Accommodating variable wind power poses a critical challenge for electric power systems that are heavily dependent on combined heat and power (CHP) plants, as is the case for north China. An improved unit-commitment model is applied to evaluate potential benefits from pumped hydro storage (PHS) and electric boilers (EBs) in West Inner Mongolia (WIM), where CHP capacity is projected to increase to 33.8 GW by 2020. A business-as-usual (BAU) reference case assumes deployment of 20 GW of wind capacity. Compared to BAU, expanding wind capacity to 40 GW would allow for a reduction in CO2 emissions of 33.9 million tons, but at a relatively high cost of US$25.3/ton, reflecting primarily high associated curtailment of wind electricity (20.4%). A number of scenarios adding PHS and/or EBs combined with higher levels of wind capacity are evaluated. The best case indicates that a combination of PHS (3.6 GW) and EBs (6.2 GW) together with 40 GW of wind capacity would reduce CO2 emissions by 43.5 million tons compared to BAU, and at a lower cost of US$16.0/ton. Achieving this outcome will require a price-incentive policy designed to ensure the profitability of both PHS and EB facilities.

2015
Yu Deng, Shenghe Liu, Jianming Cai, Xi Lu, and Chris P Nielsen. 2015. “Spatial pattern and evolution of Chinese provincial population: Methods and empirical study.” Journal of Geographical Sciences, 25, 12, Pp. 1507-1520. Publisher's VersionAbstract

China has been experiencing an unprecedented urbanization process. In 2011, China’s urban population reached 691 million with an urbanization rate of 51.27%. Urbanization level is expected to increase to 70% in China in 2030, reflecting the projection that nearly 300 million people would migrate from rural areas to urban areas over this period. At the same time, the total fertility rate of China’s population is declining due to the combined effect of economic growth, environmental carrying capacity, and modern social consciousness. The Chinese government has loosened its “one-child policy” gradually by allowing childbearing couples to have the second child as long as either of them is from a one-child family. In such rapidly developing country, the natural growth and spatial migration will consistently reshape spatial pattern of population. An accurate prediction of the future spatial pattern of population and its evolution trend are critical to key policy-making processes and spatial planning in China including urbanization, land use development, ecological conservation and environmental protection. In this paper, a top-down method is developed to project the spatial distribution of China’s future population with considerations of both natural population growth at provincial level and the provincial migration from 2010 to 2050. Building on this, the spatial pattern and evolution trend of Chinese provincial population are analyzed. The results suggested that the overall spatial pattern of Chinese population will be unlikely changed in next four decades, with the east area having the highest population density and followed by central area, northeast and west area. Four provinces in the east, Shanghai, Beijing, Tianjin and Jiangsu, will remain the top in terms of population density in China, and Xinjiang, Qinghai and Tibet will continue to have the lowest density of population. We introduced an index system to classify the Chinese provinces into three categories in terms of provincial population densities: Fast Changing Populated Region (FCPR), Low Changing Populated Region (LCPR) and Inactive Populated Region (IPR). In the FCPR, China’s population is projected to continue to concentrate in net immigration leading type (NILT) area where receives nearly 99% of new accumulated floating population. Population densities of Shanghai, Beijing, Zhejiang will peak in 2030, while the population density in Guangdong will keep increasing until 2035. Net emigration leading type (NELT) area will account for 75% of emigration population, including Henan, Anhui, Chongqing and Hubei. Natural growth will play a dominant role in natural growth leading type area, such as Liaoning and Shandong, because there will be few emigration population. Due to the large amount of moving-out labors and gradually declining fertility rates, population density of the LCPR region exhibits a downward trend, except for Fujian and Hainan. The majority of the western provinces will be likely to remain relatively low population density, with an average value of no more than 100 persons per km2.

Haikun Wang, Yanxia Zhang, Xi Lu, Chris P Nielsen, and Jun Bi. 2015. “Understanding China's carbon dioxide emissions from both production and consumption perspectives.” Renewable and Sustainable Energy Reviews, 52, Pp. 189-200. Publisher's VersionAbstract

China is now the largest emitter of CO2 in the world, having contributed nearly half of the global increase in carbon emissions between 1980 and 2010. The existing literature on China’s carbon emissions has focused on two dimensions: the amount of CO2 emitted within China’s geographical boundaries (a production-based perspective), and the drivers of, and responsibility for, these emissions (a consumption-based perspective). The current study begins with a comprehensive review of China’s CO2 emissions, and then analyzes their driving forces from both consumption and production perspectives, at both national and provincial levels. It is concluded that China’s aggregate national CO2 emissions from fossil fuel consumption and cement production maintained high growth rates during 2000-2010. National emissions reached 6.8–7.3 billion tons in 2007, nearly 25% of which were caused by net exports (i.e., exports minus imports) to other countries. However, emission characteristics varied significantly among different regions and provinces, and considerable emission leakage from the developed eastern regions to inland and western areas of the country was found. The objectives of China’s policies should therefore be broadened from continued improvement of energy efficiency to accelerating regional technology transfer and preventing mere relocation of carbon-intensive economic activities from developed coastal regions to less developed, inland provinces. To rapidly and effectively cut down China’s carbon emissions, moreover, its energy supply should be aggressively decarbonized by promoting renewable and low carbon energy sources.

Pages