刘家霖 Jialin Liu

2020
Chenghe Guan, Jialin Liu, Sumeeta Srinivasan, Bo Zhang, Liangjun Da, and Chris P. Nielsen. 2020. “The influence of neighborhood types on active transport in China’s growing cities.” Transportation Research Part D: Transport and Environment, 80, 102273. Publisher's VersionAbstract
Rapid urban expansion in China has created both opportunities and challenges for promoting active transport in urban residential communities. Previous studies have shown that the urban form at the city scale has affected active transport in Chinese cities. However, there is less agreement about how the physical and social variations of neighborhood types should be addressed. This research investigates the four most representative neighborhood types found in Chinese cities: traditional mixed-use, slab block work-unit, gated community, and resettlement housing. Household travel diaries conducted in Chengdu in 2016 were analyzed using binary logistic regressions, supplemented by informal onsite interviews. The findings indicate significant variations in the use and accessibility of active transport in each neighborhood type for non-work trips. This suggests that each neighborhood type may need different strategies for promoting active transport: (1) the traditional mixed-use neighborhoods are in need of intensified urban retrofitting projects to reclaim public open space; (2) the work-unit could benefit from comprehensive plans rather than a patchwork of projects; (3) while opening up gated communities can improve porosity across neighborhoods and promote active transport, the more pressing issue may be their inability to keep up with the transportation needs of the residents; and (4) residents of resettlement housing should have better access to employment using transit and non-motorized modes.
Jialin Liu, Fangyan Cheng, J. William Munger, Timothy G. Whitby, Peng Jiang, Siyue Chen, Weiwen Ji, and Xiuling Man. 2020. “Precipitation extremes influence patterns and partitioning of evapotranspiration and transpiration in a deciduous boreal larch forest.” Agricultural and Forest Meteorology, 287, 107936. Publisher's VersionAbstract

 

Ecosystems at the margins of their zone could be amongst the first to experience significant shifts in structure and function. At this site there have already been signs of permafrost degradation and more frequent temperature and precipitation anomalies. The canopy-dominant larch accounted for half the total T fluxes. The remaining 50% was distributed evenly among intermediate and suppressed trees. T is the dominant subcomponent in ET, where overall T/ET varies of 66%–84% depending on precipitation patterns. In dormant and early growing seasons, T still constitutes a majority of ET even though the canopy foliage is not fully developed because cold soil creates a negative soil to air vapor pressure gradient that impedes evaporation. However, in the peak growing season, excess precipitation reduces T while providing sufficient wetness for surface evaporation. ET from standard data product based on MODIS satellite reflectance underestimates tower ET by 17%–29%. Solar-induced chlorophyll fluorescence measured by satellite is well correlated with tower ET (r2 = 0.69–0.73) and could provide a better basis for regional ET extrapolations. Sites along boreal ecotones are critical to observe for signs of shifts in their structure, function, and response to climate anomalies.