Nielsen, Chris P.

2022
Shaodan Huang, Shaojie Song, Chris P. Nielsen, Yuqiang Zhang, Jianyin Xiong, Louise B. Weschler, Shaodong Xie, and Jing Li. 2022. “Residential building materials: An important source of ambient formaldehyde in mainland China.” Environment International, 158, January, Pp. 106909. Publisher's VersionAbstract
This study investigates the contribution of formaldehyde from residential building materials to ambient air in mainland China. Based on 265 indoor field tests in 9 provinces, we estimate that indoor residential sources are responsible for 6.66% of the total anthropogenic formaldehyde in China’s ambient air (range for 31 provinces: 1.88–18.79%). Residential building materials rank 6th among 81 anthropogenic sources (range: 2nd–10th for 31 provinces). Emission intensities show large spatial variability between and within regions due to different residential densities, emission characteristics of building materials, and indoor thermal conditions. Our findings indicate that formaldehyde from the indoor environment is a significant source of ambient formaldehyde, especially in urban areas. This study will help to more accurately evaluate exposure to ambient formaldehyde and its related pollutants, and will assist in formulating policies to protect air quality and public health.
2021
Xi Lu, Chris P. Nielsen, Chongyu Zhang, Jiacong Li, Xu He, Ye Wu, Shuxiao Wang, Feng Song, Chu Wei, Kebin He, Michael P. McElroy, and Jiming Hao. 2021. “Combined solar power and storage as cost-competitive and grid-compatible supply for China’s future carbon-neutral electricity system.” Proceedings of the National Academy of Sciences, 118, October, Pp. 42. Publisher's VersionAbstract
As the world’s largest CO2 emitter, China’s ability to decarbonize its energy system strongly affects the prospect of achieving the 1.5 °C limit in global, average surface-temperature rise. Understanding technically feasible, cost-competitive, and grid-compatible solar photovoltaic (PV) power potentials spatiotemporally is critical for China’s future energy pathway. This study develops an integrated model to evaluate the spatiotemporal evolution of the technology-economic-grid PV potentials in China during 2020 to 2060 under the assumption of continued cost degression in line with the trends of the past decade. The model considers the spatialized technical constraints, up-to-date economic parameters, and dynamic hourly interactions with the power grid. In contrast to the PV production of 0.26 PWh in 2020, results suggest that China’s technical potential will increase from 99.2 PWh in 2020 to 146.1 PWh in 2060 along with technical advances, and the national average power price could decrease from 4.9 to 0.4 US cents/kWh during the same period. About 78.6% (79.7 PWh) of China’s technical potential will realize price parity to coal-fired power in 2021, with price parity achieved nationwide by 2023. The cost advantage of solar PV allows for coupling with storage to generate cost-competitive and grid-compatible electricity. The combined systems potentially could supply 7.2 PWh of grid-compatible electricity in 2060 to meet 43.2% of the country’s electricity demand at a price below 2.5 US cents/kWh. The findings highlight a crucial energy transition point, not only for China but for other countries, at which combined solar power and storage systems become a cheaper alternative to coal-fired electricity and a more grid-compatible option.
Lu et al. is the cover article of this October issue of PNAS
Yan Zhang, Yu Zhao, Meng Gao, Xin Bo, and Chris P. Nielsen. 2021. “Air quality and health benefits from ultra-low emission control policy indicated by continuous emission monitoring: a case study in the Yangtze River Delta region, China.” Atmospheric Chemistry and Physics, 21, Pp. 6411–6430. Publisher's VersionAbstract
To evaluate the improved emission estimates from online monitoring, we applied the Models-3/CMAQ (Community Multiscale Air Quality) system to simulate the air quality of the Yangtze River Delta (YRD) region using two emission inventories with and without incorporated data from continuous emission monitoring systems (CEMSs) at coal-fired power plants (cases 1 and 2, respectively). The normalized mean biases (NMBs) between the observed and simulated hourly concentrations of SO2, NO2, O3, and PM2.5 in case 2 were −3.1 %, 56.3 %, −19.5 %, and −1.4 %, all smaller in absolute value than those in case 1 at 8.2 %, 68.9 %, −24.6 %, and 7.6 %, respectively. The results indicate that incorporation of CEMS data in the emission inventory reduced the biases between simulation and observation and could better reflect the actual sources of regional air pollution. Based on the CEMS data, the air quality changes and corresponding health impacts were quantified for different implementation levels of China's recent “ultra-low” emission policy. If the coal-fired power sector met the requirement alone (case 3), the differences in the simulated monthly SO2, NO2, O3, and PM2.5 concentrations compared to those of case 2, our base case for policy comparisons, would be less than 7 % for all pollutants. The result implies a minor benefit of ultra-low emission control if implemented in the power sector alone, which is attributed to its limited contribution to the total emissions in the YRD after years of pollution control (11 %, 7 %, and 2 % of SO2, NOX, and primary particle matter (PM) in case 2, respectively). If the ultra-low emission policy was enacted at both power plants and selected industrial sources including boilers, cement, and iron and steel factories (case 4), the simulated SO2, NO2, and PM2.5concentrations compared to the base case would be 33 %–64 %, 16 %–23 %, and 6 %–22 % lower, respectively, depending on the month (January, April, July, and October 2015). Combining CMAQ and the Integrated Exposure Response (IER) model, we further estimated that 305 deaths and 8744 years of life loss (YLL) attributable to PM2.5 exposure could be avoided with the implementation of the ultra-low emission policy in the power sector in the YRD region. The analogous values would be much higher, at 10 651 deaths and 316 562 YLL avoided, if both power and industrial sectors met the ultra-low emission limits. In order to improve regional air quality and to reduce human health risk effectively, coordinated control of multiple sources should be implemented, and the ultra-low emission policy should be substantially expanded to major emission sources in industries other than the power industry.
Minghao Zhuang, Xi Lu, Wei Peng, Yanfen Wang, Jianxiao Wang, Chris P. Nielsen, and Michael B. McElroy. 2021. “Opportunities for household energy on the Qinghai-Tibet Plateau in line with United Nations’ Sustainable Development Goals.” Renewable and Sustainable Energy Reviews, 144, July 2021, Pp. 110982. Publisher's VersionAbstract
Approximately seven million population in the Qinghai-Tibet Plateau of China, a global climate sensitive region, still rely primarily on yak dung for household cooking and heating. The treatment and combustion of yak dung result in a variety of negative impacts in terms of local alpine grassland degradation, indoor air pollution, public health risk, as well as global climate change. There is an urgent need to explore alternative pathway for affordable and clean energy as indicated in the United Nations’ Sustainable Development Goals for 2030. This perspective has analyzed the key challenges rooted in yak dung use on the Qinghai-Tibet Plateau region. Based on this, this perspective has further proposed a new complementary energy system to take advantage of locally available, clean and sustainable energy sources of wind and solar power, and have provided economic analyses. Meanwhile, this perspective has pointed out the potential barriers to promoting the new complementary energy system in the Qinghai-Tibet Plateau region due to traditional habits, economic factors and policies. Finally, strategies for transitioning from yak dung to the proposed alternative energy system is discussed at the end. Successful energy transition for the Qinghai-Tibet Plateau region offers an important option to achieving many other sustainable development goals related to climate change, economic development, and environment. The perspective is expected to shed light on the development of sustainable energy in other developing region or countries in the world to address multiple societal goals.
Jinzhao Yang, Yu Zhao, Jing Cao, and Chris P. Nielsen. 2021. “Co-benefits of carbon and pollution control policies on air quality and health till 2030 in China.” Environment International, 152, 2021. Publisher's VersionAbstract
Facing the dual challenges of climate change and air pollution, China has made great efforts to explore the co-control strategies for the both. We assessed the benefits of carbon and pollution control policies on air quality and human health, with an integrated framework combining an energy-economic model, an air quality model and a concentration–response model. With a base year 2015, seven combined scenarios were developed for 2030 based on three energy scenarios and three end-of-pipe control ones. Policy-specific benefits were then evaluated, indicated by the reduced emissions, surface concentrations of major pollutants, and premature deaths between scenarios. Compared to the 2030 baseline scenario, the nationwide PM2.5- and O3-related mortality was expected to decline 23% or 289 (95% confidence interval: 220–360) thousand in the most stringent scenario, and three quarters of the avoided deaths were attributed to the end-of-pipe control measures. Provinces in heavily polluted and densely populated regions would benefit more from carbon and pollution control strategies. The population fractions with PM2.5 exposure under the national air quality standard (35 μg/m3) and WHO guideline (10 μg/m3) would be doubled from 2015 to 2030 (the most stringent scenario), while still very few people would live in areas with the WHO guideline achieved for O3 (100 μg/m3). Increased health impact of O3 suggested a great significance of joint control of PM2.5 and O3 in future policy-making.
 
Faan Chen, Jiaorong Wu, Xiaohong Chen, and Chris Nielsen. 2021. “Disentangling the impacts of the built environment and self-selection on travel behavior: An empirical study in the context of different housing types.” Cities, 116, September 2021, Pp. 103285. Publisher's VersionAbstract
Due to spatial heterogeneity worldwide, results from studies examining the effect of residential self-selection on travel behavior vary substantially. As a result of housing reform, the unique housing allocation system in China is a prime example of a context where the self-selection effect may conflict with international knowledge. Using a sample of 3836 residents, whom are living in Transit-Oriented Development (TOD) and non-TOD neighborhoods in Shanghai, this study untangles the effects that the built environment and residential self-selection have on travel behavior, in the context of diversified housing types in urban China. Specifically, this paper employs propensity score matching (PSM) to quantitate the relative importance of the built environment itself, verses residential self-selection, in influencing travel behavior for each of the housing types. The results show that the residential self-selection effect in the four types of housing (work-unit, commodity, public, and replacement) accounts for 15.2%, 30.7%, 18.5%, and 5.9% of the total impact on vehicle kilometers traveled (VKT), respectively. These findings expand the international database of point estimates in the relative contribution of self-selection toward the impact on travel behavior across global contexts, providing a comprehensive framework for similar studies on self-selection in other parts of the world.
Qing Yang, Hewen Zhou, Pietro Bartocci, Francesco Fantozzi, Ondřej Mašek, Foster Agblevor, Zhiyu Wei, Haiping Yang, Hanping Chen, Xi Lu, Guoqing Chen, Chuguang Zheng, Chris P. Nielsen, and Michael B. McElroy. 2021. “Prospective contributions of biomass pyrolysis to China’s 2050 carbon reduction and renewable energy goals.” Nature Communications. Publisher's VersionAbstract
Deployment of negative emission technologies needs to start immediately if we are to avoid overshooting international carbon targets, reduce negative climate impacts, and minimize costs of emission mitigation. Actions in China, given its importance for the global anthropogenic carbon budget, can be decisive. While bioenergy with carbon capture and storage (BECCS) may need years to mature, this study focuses on developing a ready-to-implement biomass intermediate pyrolysis poly-generation (BIPP) technology to produce a potentially stable form of biochar, a medium for carbon storage, and to provide a significant source of valuable biofuels, especially pyrolysis gas. Combining the experimental data with hybrid models, the results show that a BIPP system can be profitable without subsidies: its national deployment could contribute to a 68% reduction of carbon emissions per unit of GDP in 2030 compared to 2005 and could result additionally in a reduction in air pollutant emissions. With 73% of national crop residues converted to biochar and other biofuels in the near term (2020 to 2030), the cumulative greenhouse gas (GHG) reduction could reach up to 5653 Mt CO2-eq by 2050, which could contribute 9-20% of the global GHG emission reduction goal for BECCS (28-65 Gt CO2-eq in IPCC’s 1.5 °C pathway), and nearly 2633 Mt more than that projected for BECCS alone. The national BIPP development strategy is developed on a provincial scale based on a regional economic and life-cycle analysis. 
Tianguang Lu, Xinyu Chen, Michael B. McElroy, Chris Nielsen, Wu Qiuwei, Hongying He, and Qian Ai. 2021. “A reinforcement learning-based decision system for electricity pricing plan selection by smart grid end users.” IEEE Transactions on Smart Grid, 1949-3061 . Publisher's VersionAbstract
With the development of deregulated retail power markets, it is possible for end users equipped with smart meters and controllers to optimize their consumption cost portfolios by choosing various pricing plans from different retail electricity companies. This paper proposes a reinforcement learning-based decision system for assisting the selection of electricity pricing plans, which can minimize the electricity payment and consumption dissatisfaction for individual smart grid end user. The decision problem is modeled as a transition probability-free Markov decision process (MDP) with improved state framework. The proposed problem is solved using a Kernel approximator-integrated batch Q-learning algorithm, where some modifications of sampling and data representation are made to improve the computational and prediction performance. The proposed algorithm can extract the hidden features behind the time-varying pricing plans from a continuous high-dimensional state space. Case studies are based on data from real-world historical pricing plans and the optimal decision policy is learned without a priori information about the market environment. Results of several experiments demonstrate that the proposed decision model can construct a precise predictive policy for individual user, effectively reducing their cost and energy consumption dissatisfaction.
2020
Archana Dayalu, J. William Munger, Yuxuan Wang, Yu Zhao, Thomas Nehrkorn, Chris P. Nielsen, Michael B. McElroy, and Rachel Chang. 2020. “Evaluating China's anthropogenic CO2 emissions inventories: a northern China case study using continuous surface observations from 2005 to 2009.” Atmospheric Chemistry and Physics. Publisher's VersionAbstract
China has pledged reduction of carbon dioxide (CO2) emissions per unit of gross domestic product (GDP) by 60 %–65 % relative to 2005 levels, and to peak carbon emissions overall by 2030. However, the lack of observational data and disagreement among the many available inventories makes it difficult for China to track progress toward these goals and evaluate the efficacy of control measures. To demonstrate the value of atmospheric observations for constraining CO2 inventories we track the ability of CO2 concentrations predicted from three different CO2 inventories to match a unique multi-year continuous record of atmospheric CO2. Our analysis time window includes the key commitment period for the Paris Agreement (2005) and the Beijing Olympics (2008). One inventory is China-specific and two are spatial subsets of global inventories. The inventories differ in spatial resolution, basis in national or subnational statistics, and reliance on global or China-specific emission factors. We use a unique set of historical atmospheric observations from 2005 to 2009 to evaluate the three CO2 emissions inventories within China's heavily industrialized and populated northern region accounting for ∼33 %–41 % of national emissions. Each anthropogenic inventory is combined with estimates of biogenic CO2 within a high-resolution atmospheric transport framework to model the time series of CO2 observations. To convert the model–observation mismatch from mixing ratio to mass emission rates we distribute it over a region encompassing 90 % of the total surface influence in seasonal (annual) averaged back-trajectory footprints (L_0.90 region). The L_0.90 region roughly corresponds to northern China. Except for the peak growing season, where assessment of anthropogenic emissions is entangled with the strong vegetation signal, we find the China-specific inventory based on subnational data and domestic field studies agrees significantly better with observations than the global inventories at all timescales. Averaged over the study time period, the unscaled China-specific inventory reports substantially larger annual emissions for northern China (30 %) and China as a whole (20 %) than the two unscaled global inventories. Our results, exploiting a robust time series of continuous observations, lend support to the rates and geographic distribution in the China-specific inventory Though even long-term observations at a single site reveal differences among inventories, exploring inventory discrepancy over all of China requires a denser observational network in future efforts to measure and verify CO2 emissions for China both regionally and nationally. We find that carbon intensity in the northern China region has decreased by 47 % from 2005 to 2009, from approximately 4 kg of CO2 per USD (note that all references to USD in this paper refer to USD adjusted for purchasing power parity, PPP) in 2005 to about 2 kg of CO2 per USD in 2009 (Fig. 9c). However, the corresponding 18 % increase in absolute emissions over the same time period affirms a critical point that carbon intensity targets in emerging economies can be at odds with making real climate progress. Our results provide an important quantification of model–observation mismatch, supporting the increased use and development of China-specific inventories in tracking China's progress as a whole towards reducing emissions. We emphasize that this work presents a methodology for extending the analysis to other inventories and is intended to be a comparison of a subset of anthropogenic CO2 emissions rates from inventories that were readily available at the time this research began. For this study's analysis time period, there was not enough spatially distinct observational data to conduct an optimization of the inventories. The primary intent of the comparisons presented here is not to judge specific inventories, but to demonstrate that even a single site with a long record of high-time-resolution observations can identify major differences among inventories that manifest as biases in the model–data comparison. This study provides a baseline analysis for evaluating emissions from a small but important region within China, as well a guide for determining optimal locations for future ground-based measurement sites.
ACP_Full_Text
Haikun Wang, Xiaojing He, Xinyu Liang, Ernani F. Choma, Yifan Liu, Li Shan, Haotian Zheng, Shaojun Zhang, Chris P. Nielsen, Shuxiao Wang, Ye Wu, and John S. Evans. 2020. “Health benefits of on-road transportation pollution control programs in China.” Proceedings of the National Academy of Sciences, Sept 2020, 201921271. Publisher's VersionAbstract
China started to implement comprehensive measures to mitigate traffic pollution at the end of 1990s, but the comprehensive effects, especially on ambient air quality and public health, have not yet been systematically evaluated. In this study, we analyze the effects of vehicle emission control measures on ambient air pollution and associated deaths attributable to long-term exposures of fine particulate matter (PM2.5) and O3 based on an integrated research framework that combines scenario analysis, air quality modeling, and population health risk assessment. We find that the total impact of these control measures was substantial. Vehicular emissions during 1998–2015 would have been 2–3 times as large as they actually were, had those measures not been implemented. The national population-weighted annual average concentrations of PM2.5 and O3 in 2015 would have been higher by 11.7 μg/m3 and 8.3 parts per billion, respectively, and the number of deaths attributable to 2015 air pollution would have been higher by 510 thousand (95% confidence interval: 360 thousand to 730 thousand) without these controls. Our analysis shows a concentration of mortality impacts in densely populated urban areas, motivating local policymakers to design stringent vehicle emission control policies. The results imply that vehicle emission control will require policy designs that are more multifaceted than traditional controls, primarily represented by the strict emission standards, with careful consideration of the challenges in coordinated mitigation of both PM2.5 and O3 in different regions, to sustain improvement in air quality and public health given continuing swift growth in China’s vehicle population.
Chenghe Guan, Jialin Liu, Sumeeta Srinivasan, Bo Zhang, Liangjun Da, and Chris P. Nielsen. 2020. “The influence of neighborhood types on active transport in China’s growing cities.” Transportation Research Part D: Transport and Environment, 80, 102273. Publisher's VersionAbstract
Rapid urban expansion in China has created both opportunities and challenges for promoting active transport in urban residential communities. Previous studies have shown that the urban form at the city scale has affected active transport in Chinese cities. However, there is less agreement about how the physical and social variations of neighborhood types should be addressed. This research investigates the four most representative neighborhood types found in Chinese cities: traditional mixed-use, slab block work-unit, gated community, and resettlement housing. Household travel diaries conducted in Chengdu in 2016 were analyzed using binary logistic regressions, supplemented by informal onsite interviews. The findings indicate significant variations in the use and accessibility of active transport in each neighborhood type for non-work trips. This suggests that each neighborhood type may need different strategies for promoting active transport: (1) the traditional mixed-use neighborhoods are in need of intensified urban retrofitting projects to reclaim public open space; (2) the work-unit could benefit from comprehensive plans rather than a patchwork of projects; (3) while opening up gated communities can improve porosity across neighborhoods and promote active transport, the more pressing issue may be their inability to keep up with the transportation needs of the residents; and (4) residents of resettlement housing should have better access to employment using transit and non-motorized modes.
Xueli Zhao, Xiaofang Wu, Chenghe Guan, Rong Ma, Chris P. Nielsen, and Bo Zhang. 2020. “Linking agricultural GHG emissions to global trade network.” Earth's Future, 8, 3. Publisher's VersionAbstract
As part of the climate policy to meet the 2‐degrees Celsius (2 °C) target, actions in all economic sectors, including agriculture, are required to mitigate global greenhouse gas (GHG) emissions. While there has been an ever‐increasing focus on agricultural greenhouse gas (AGHG) emissions, limited attention has been paid to their economic drivers in the globalized world economy and related mitigation potentials. This paper makes a first attempt to trace AGHG emissions via global trade networks using a multi‐regional input‐output model and a complex network model. Over one third of global AGHG emissions in 2012 can be linked with products traded internationally, of which intermediate trade and final trade contribute 64.2% and 35.8%, respectively. Japan, the USA, Germany, the UK, and Hong Kong are the world's five largest net importers of embodied emissions, while Ethiopia, Australia, Pakistan, India and Argentina are the five largest net exporters. Some hunger‐afflicted developing countries in Asia and Africa are important embodied emission exporters, due to their large‐scale exports of agricultural products. Trade‐related virtual AGHG emission transfers shape a highly heterogenous network, due to the coexistence of numerous peripheral economies and a few highly‐connected hub economies. The network clustering structure is revealed by the regional integration of several trading communities, while hub economies are collectors and distributors in the global trade network, with important implications for emission mitigation. Achieving AGHG emission reduction calls for a combination of supply‐ and demand‐side policies covering the global trade network.
AGU_Full_Text
2019
Yan Zhang, Xin Bo, Yu Zhao, and Chris P. Nielsen. 2019. “Benefits of current and future policies on emissions of China's coal-fired power sector indicated by continuous emission monitoring.” Environmental Pollution, 251, Pp. 415-424. Publisher's VersionAbstract
Emission inventories are critical to understanding the sources of air pollutants, but have high uncertainties in China due in part to insufficient on-site measurements. In this study, we developed a method of examining, screening and applying online data from the country's improving continuous emission monitoring systems (CEMS) to reevaluate a “bottom-up” emission inventory of China's coal-fired power sector. The benefits of China's current national emission standards and ultra-low emission policy for the sector were quantified assuming their full implementation. The derived national average emission factors of SO2, NOx and particulate matter (PM) were 1.00, 1.00 and 0.25 kg/t-coal respectively for 2015 based on CEMS data, smaller than those of previous studies that may not fully recognize improved emission controls in recent years. The annual emissions of SO2, NOx and PM from the sector were recalculated at 1321, 1430 and 334 Gg respectively, 75%, 63% and 76% smaller than our estimates based on a previous approach without the benefit of CEMS data. The results imply that online measurement with proper data screening can better track the recent progress of emission controls. The emission intensity (the ratio of emissions to economic output) of Northwest China was larger than that of other regions, attributed mainly to its less intensive economy and industry. Transmission of electricity to more-developed eastern provinces raised the energy consumption and emissions of less-developed regions. Judged by 95 percentiles of flue-gas concentrations measured by CEMS, most power plants met the current national emission standards in 2015 except for those in Northwest and Northeast China, while plants that met the ultra-low emission policy were much scarcer. National SO2, NOx and PM emissions would further decline by 68%, 55% and 81% respectively if the ultra-low emission policy can be strictly implemented, implying the great potential of the policy for emission abatement.
Sumeeta Srinivasan, Chenghe Guan, and Chris P. Nielsen. 2019. “Built environment, income and travel behavior: Change in the city of Chengdu 2005-2016.” International Journal of Sustainable Transportation. Publisher's VersionAbstract
In this paper, we look at differences in travel behavior and location characteristics across income in Chengdu, China at two points of time, 2005 and 2016, using household travel surveys. Specifically, we compare changes over time for different income groups for Chengdu in 2005 and 2016. We find that walking or biking remains the most common mode for all income groups but higher-income households appear to have more choices depending on the proximity of their neighborhood to downtown. We also find that both average local and average regional access have worsened since 2005. Furthermore, it appears that there is less economic diversity within neighborhoods in 2016 when compared to 2005, with more locations appearing to have 40% or more of low-, middle-, or high-income households than in the past. Finally, we find that low-income households and older trip makers are more likely to walk or bike and that high-income households are the most likely to own cars and use motorized modes. Built environment characteristics like mixed land use appear to significantly reduce travel time in 2016 but do not result in higher non-motorized transport mode share. We contribute to existing literature by evaluating changes in the relationship of built environment and travel behavior during a period of rapid urbanization and economic growth in a Chinese city.
China’s CO2 peak before 2030 implied from diverse characteristics and growth of cities
Haikun Wang, Xi Lu, Yu Deng, Yaoguang Sun, Chris P. Nielsen, Yifan Liu, Ge Zhu, Maoliang Bu, Jun Bi, and Michael B. McElroy. 2019. “China’s CO2 peak before 2030 implied from diverse characteristics and growth of cities.” Nature Sustainability, 2, Pp. 748–754. Publisher's VersionAbstract
China pledges to peak CO2 emissions by 2030 or sooner under the Paris Agreement to limit global warming to 2 °C or less by the end of the century. By examining CO2 emissions from 50 Chinese cities over the period 2000–2016, we found a close relationship between per capita emissions and per capita gross domestic product (GDP) for individual cities, following the environmental Kuznets curve, despite diverse trajectories for CO2 emissions across the cities. Results show that carbon emissions peak for most cities at a per capita GDP (in 2011 purchasing power parity) of around US$21,000 (80% confidence interval: US$19,000 to 22,000). Applying a Monte Carlo approach to simulate the peak of per capita emissions using a Kuznets function based on China’s historical emissions, we project that emissions for China should peak at 13–16 GtCO2 yr−1 between 2021 and 2025, approximately 5–10 yr ahead of the current Paris target of 2030. We show that the challenges faced by individual types of Chinese cities in realizing low-carbon development differ significantly depending on economic structure, urban form and geographical location.
Jing Cao, Mun S. Ho, Dale W. Jorgenson, and Chris P. Nielsen. 2019. “China’s emissions trading system and an ETS-carbon tax hybrid.” Energy Economics, 81, Pp. 741-753. Publisher's VersionAbstract
China is introducing a national carbon emission trading system (ETS), with details yet to be finalized. The ETS is expected to cover only the major emitters but it is often argued that a more comprehensive system will achieve the emission goals at lower cost. We first examine an ETS that covers both electricity and cement sectors and consider an ambitious cap starting in 2017 that will meet the official objective to reduce the carbon-GDP intensity by 60-65% by 2030 compared to 2005 levels. The two ETS-covered industries are compensated with an output-based subsidy to represent the intention to give free permits to the covered enterprises. We then consider a hybrid system where the non-ETS sectors pay a carbon tax and share in the CO2 reduction burden. Our simulations indicate that hybrid systems will achieve the same CO2 goals with lower permit prices and GDP losses. We also show how auctioning of the permits improves the efficiency of the ETS and the hybrid systems. Finally, we find that these CO2 control policies are progressive in that higher incomes households bear a bigger burden.
Appendix
Chenghe Guan, Sumeeta Srinivasan, and Chris P. Nielsen. 2019. “Does neighborhood form influence low-carbon transportation in China?” Transportation Research Part D: Transport and Environment, 67, Pp. 406-420. Publisher's VersionAbstract
Developing less auto-dependent urban forms and promoting low-carbon transportation (LCT) are challenges facing our cities. Previous literature has supported the association between neighborhood form and low-carbon travel behaviour. Several studies have attempted to measure neighborhood forms focusing on physical built-environment factors such as population and employment density and socio-economic conditions such as income and race. We find that these characteristics may not be sufficiently fine-grained to differentiate between neighborhoods in Chinese cities. This research assesses characteristics of neighborhood spatial configuration that may influence the choice of LCT modes in the context of dense Chinese cities. Urban-form data from 40 neighborhoods in Chengdu, China, along with a travel behaviour survey of households conducted in 2016, were used to generate several measures of land use diversity and accessibility for each neighborhood. We use principle component analysis (PCA) to group these variables into dimensions that could be used to classify the neighborhoods. We then estimate regression models of low-carbon mode choices such as walking, bicycling, and transit to better understand the significance of these built-environment differences at the neighbourhood level. We find that, first, members of households do choose to walk or bike or take transit to work provided there is relatively high population density and sufficient access to public transit and jobs. Second, land-use diversity alone was not found to be significant in affecting LCT mode choice. Third, the proliferation of gated communities was found to reduce overall spatial connectivity within neighborhoods and had a negative effect on choice of LCT.
Xi Lu, Liang Cao, Haikun Wang, Wei Peng, Jia Xing, Shuxiao Wang, Siyi Cai, Bo Shen, Qing Yang, Chris P. Nielsen, and Michael B. McElroy. 2019. “Gasification of coal and biomass as a net carbon-negative power source for environment-friendly electricity generation in China.” Proceedings of the National Academy of Sciences, 116, 17, Pp. 8206-8213. Publisher's VersionAbstract
Realizing the goal of the Paris Agreement to limit global warming to 2 °C by the end of this century will most likely require deployment of carbon-negative technologies. It is particularly important that China, as the world’s top carbon emitter, avoids being locked into carbon-intensive, coal-fired power-generation technologies and undertakes a smooth transition from high- to negative-carbon electricity production. We focus here on deploying a combination of coal and biomass energy to produce electricity in China using an integrated gasification cycle system combined with carbon capture and storage (CBECCS). Such a system will also reduce air pollutant emissions, thus contributing to China’s near-term goal of improving air quality. We evaluate the bus-bar electricity-generation prices for CBECCS with mixing ratios of crop residues varying from 0 to 100%, as well as associated costs for carbon mitigation and cobenefits for air quality. We find that CBECCS systems employing a crop residue ratio of 35% could produce electricity with net-zero life-cycle emissions of greenhouse gases, with a levelized cost of electricity of no more than 9.2 US cents per kilowatt hour. A carbon price of approximately $52.0 per ton would make CBECCS cost-competitive with pulverized coal power plants. Therefore, our results provide critical insights for designing a CBECCS strategy in China to harness near-term air-quality cobenefits while laying the foundation for achieving negative carbon emissions in the long run.
PNAS paper.pdf
Xingning Han, Xinyu Chen, Michael B. McElroy, Shiwu Liao, Chris P. Nielsen, and Jinyu Wen. 2019. “Modeling formulation and validation for accelerated simulation and flexibility assessment on large scale power systems under higher renewable penetrations.” Applied Energy, 237, Pp. 145-154. Publisher's VersionAbstract
Deploying high penetration of variable renewables represents a critical pathway for decarbonizing the power sector. Hydro power (including pumped-hydro), batteries, and fast responding thermal units are essential in providing system flexibility at elevated renewable penetration. How to quantify the merit of flexibility from these sources in accommodating variable renewables, and to evaluate the operational costs considering system flexibility constraints have been central challenges for future power system planning. This paper presents an improved linear formulation of the unit commitment model adopting unit grouping techniques to expedite evaluation of the curtailment of renewables and operational costs for large-scale power systems. All decision variables in this formulation are continuous, and all chronological constraints are formulated subsequently. Tested based on actual data from a regional power system in China, the computational speed of the model is more than 20,000 times faster than the rigorous unit commitment model, with less than 1% difference in results. Hourly simulation for an entire year takes less than 3 min. The results demonstrate strong potential to apply the proposed model to long term planning related issues, such as flexibility assessment, wind curtailment analysis, and operational cost evaluation, which could set a methodological foundation for evaluating the optimal combination of wind, solar and hydro investments.
The potential of photovoltaics to power the Belt and Road Initiative
Shi Chen, Xi Lu, Yufei Miao, Yu Deng, Chris P. Nielsen, Noah Elbot, Yuanchen Wang, Kathryn G. Logan, Michael B. McElroy, and Jiming Hao. 2019. “The potential of photovoltaics to power the Belt and Road Initiative.” Joule, 3, Pp. 1-18. Publisher's VersionAbstract
Construction of carbon-intensive energy infrastructure is well underway under the Belt & Road Initiative (BRI), challenging the global climate target. Regionally abundant solar power could provide an alternative for electricity generation. An integrative spatial model was developed to evaluate the technical potential of solar photovoltaic power. The influence of impacting factors was quantified systematically on an hourly basis. Results suggest that the electricity potential for the BRI region reaches 448.9 PWh annually, 41.3 times the regional demand for electricity in 2016. Tapping 3.7% of the potential through deploying 7.8 TW capacity could satisfy the regional electricity demand projected for 2030, requiring an investment of approximately 11.2 trillion 2017 USD and a commitment in land area of 88,426 km2, approximately 0.9% of China’s total. Countries endowed with 70.7% of the overall potential consume only 30.1% of regional electricity. The imbalance underscores the advantage of regional cooperation and investments in interconnected grids.
graphic summary Joule paper

Pages