2019 Oct 24

Characterizing Haze Pollution in China Based on Multiple Techniques

3:30pm to 4:45pm


Pierce 100F, 29 Oxford Street, Cambridge

A China Project Research Seminar with Fengkui Duan, an associate professor at the School of Environment, Tsinghua University, China.

She earned her PhD in Environmental Science and Engineering from Tsinghua University. Her research concerns air pollution and its control,...

Read more about Characterizing Haze Pollution in China Based on Multiple Techniques
Nature Sustainability


August 13, 2019


最近,一个由南京大学和哈佛大学的研究人员所做的研究刊登在《自然·可持续发展Nature Sustainability)》杂志封面,该研究指出,中国作为目前世界上碳排放量最大的国家,有望提前十年达到其碳排放目标。


Read more about 中国可能会提前实现二氧化碳排放目标
Haikun Wang, Xi Lu, Yu Deng, Yaoguang Sun, Chris P. Nielsen, Yifan Liu, Ge Zhu, Maoliang Bu, Jun Bi, and Michael B. McElroy. 2019. “China’s CO2 peak before 2030 implied from diverse characteristics and growth of cities.” Nature Sustainability. Publisher's VersionAbstract
China pledges to peak CO2 emissions by 2030 or sooner under the Paris Agreement to limit global warming to 2 °C or less by the end of the century. By examining CO2 emissions from 50 Chinese cities over the period 2000–2016, we found a close relationship between per capita emissions and per capita gross domestic product (GDP) for individual cities, following the environmental Kuznets curve, despite diverse trajectories for CO2 emissions across the cities. Results show that carbon emissions peak for most cities at a per capita GDP (in 2011 purchasing power parity) of around US$21,000 (80% confidence interval: US$19,000 to 22,000). Applying a Monte Carlo approach to simulate the peak of per capita emissions using a Kuznets function based on China’s historical emissions, we project that emissions for China should peak at 13–16 GtCO2 yr−1 between 2021 and 2025, approximately 5–10 yr ahead of the current Paris target of 2030. We show that the challenges faced by individual types of Chinese cities in realizing low-carbon development differ significantly depending on economic structure, urban form and geographical location.
Peter Sherman, Meng Gao, Shaojie Song, Patrick Ohiomoba, Alex Archibald, and Michael B. McElroy. 2019. “The influence of dynamics and emissions changes on China’s wintertime haze.” Journal of Applied Meteorology and Climatology. Publisher's VersionAbstract
Haze days induced by aerosol pollution in North and East China have posed a persistent and growing problem over the past few decades. These events are particularly threatening to densely-populated cities such as Beijing. While the sources of this pollution are predominantly anthropogenic, natural climate variations may also play a role in allowing for atmospheric conditions conducive to formation of severe haze episodes over populated areas. Here, an investigation is conducted into the effects of changes in global dynamics and emissions on air quality in China’s polluted regions using 35 simulations developed from the Community Earth Systems Model Large Ensemble (CESM LENS) run over the period 1920-2100. It is shown that internal variability significantly modulates aerosol optical depth (AOD) over China; it takes roughly a decade for the forced response to balance the effects from internal variability even in China’s most polluted regions. Random forest regressions are used to accurately model (R2 > 0.9) wintertime AOD using just climate oscillations, the month of the year and emissions. How different phases of each oscillation affect aerosol loading are projected using these regressions. AOD responses are identified for each oscillation, with particularly strong responses from El Niño-Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO). As ENSO can be projected a few months in advance and improvements in linear inverse modelling (LIM) may yield a similar predictability for the PDO, results of this study offer opportunities to improve the predictability of China’s severe wintertime haze events, and to inform policy options that could mitigate subsequent health impacts.
Yan Zhang, Xin Bo, Yu Zhao, and Chris P. Nielsen. 2019. “Benefits of current and future policies on emissions of China's coal-fired power sector indicated by continuous emission monitoring.” Environmental Pollution, 251, Pp. 415-424. Publisher's VersionAbstract
Emission inventories are critical to understanding the sources of air pollutants, but have high uncertainties in China due in part to insufficient on-site measurements. In this study, we developed a method of examining, screening and applying online data from the country's improving continuous emission monitoring systems (CEMS) to reevaluate a “bottom-up” emission inventory of China's coal-fired power sector. The benefits of China's current national emission standards and ultra-low emission policy for the sector were quantified assuming their full implementation. The derived national average emission factors of SO2, NOx and particulate matter (PM) were 1.00, 1.00 and 0.25 kg/t-coal respectively for 2015 based on CEMS data, smaller than those of previous studies that may not fully recognize improved emission controls in recent years. The annual emissions of SO2, NOx and PM from the sector were recalculated at 1321, 1430 and 334 Gg respectively, 75%, 63% and 76% smaller than our estimates based on a previous approach without the benefit of CEMS data. The results imply that online measurement with proper data screening can better track the recent progress of emission controls. The emission intensity (the ratio of emissions to economic output) of Northwest China was larger than that of other regions, attributed mainly to its less intensive economy and industry. Transmission of electricity to more-developed eastern provinces raised the energy consumption and emissions of less-developed regions. Judged by 95 percentiles of flue-gas concentrations measured by CEMS, most power plants met the current national emission standards in 2015 except for those in Northwest and Northeast China, while plants that met the ultra-low emission policy were much scarcer. National SO2, NOx and PM emissions would further decline by 68%, 55% and 81% respectively if the ultra-low emission policy can be strictly implemented, implying the great potential of the policy for emission abatement.
2019 Jun 01

CCICED Annual Meeting

Sat Jun 1 (All day) to Wed Jun 5 (All day)


Hangzhou International Expo Center, Zhejiang Province, China
China Project faculty chair, Michael McElroy, who has been appointed to the China Council for International Cooperation on Environment and Development (CCICED) for a 5-year term, and Executive Director, Chris Nielsen, will be participating in the ... Read more about CCICED Annual Meeting


April 8, 2019


英文原文由Leah Burrows撰写。

如果想要实现《巴黎气候协定》的目标将全球气温升幅控制在前工业水平以上2摄氏度以内,那么仅仅依靠诸如风能和太阳能这种碳中和能源是远远不够的,使用负碳技术包括负碳能源来切实减少大气中的二氧化碳水平将是必不可少的。... Read more about 中国的负碳发电

S.J. Song, M. Gao, W.Q. Xu, Y.L. Sun, D.R. Worsnop, J.T. Jayne, Y.Z. Zhang, L. Zhu, M. Li, Z. Zhou, C.L. Cheng, Y.B. Lv, Y. Wang, W. Peng, X.B. Xu, N. Lin, Y.X. Wang, S.X. Wang, J. W. Munger, D. Jacob, and M.B. McElroy. 2019. “Possible heterogeneous hydroxymethanesulfonate (HMS) chemistry in northern China winter haze and implications for rapid sulfate formation.” Atmospheric Chemistry and Physics, 19, Pp. 1357-1371. Publisher's VersionAbstract
The chemical mechanisms responsible for rapid sulfate production, an important driver of winter haze formation in northern China, remain unclear. Here, we propose a potentially important heterogeneous hydroxymethanesulfonate (HMS) chemical mechanism. Through analyzing field measurements with aerosol mass spectrometry, we show evidence for a possible significant existence in haze aerosols of organosulfur primarily as HMS, misidentified as sulfate in previous observations. We estimate that HMS can account for up to about one-third of the sulfate concentrations unexplained by current air quality models. Heterogeneous production of HMS by SO2 and formaldehyde is favored under northern China winter haze conditions due to high aerosol water content, moderately acidic pH values, high gaseous precursor levels, and low temperature. These analyses identify an unappreciated importance of formaldehyde in secondary aerosol formation and call for more research on sources and on the chemistry of formaldehyde in northern China winter.