政策

2019 Dec 05

Opportunities and Challenges in China's Carbon Market: From Model to Reality

3:45pm to 5:00pm

Location: 

Pierce 100F, 29 Oxford Street, Cambridge

A Harvard-China Project Research Seminar with Cecilia Han Springer, Postdoctoral Research Fellow, Environment and Natural Resources and Science, Technology and Public Policy, Harvard Kennedy School

Please note the start time of 3:45pm

Abstract: Can China's policies promote...

Read more about Opportunities and Challenges in China's Carbon Market: From Model to Reality
Jing Cao, Mun S. Ho, Dale W. Jorgenson, and Chris P. Nielsen. 2019. “China’s emissions trading system and an ETS-carbon tax hybrid.” Energy Economics, 81, Pp. 741-753. Publisher's VersionAbstract
China is introducing a national carbon emission trading system (ETS), with details yet to be finalized. The ETS is expected to cover only the major emitters but it is often argued that a more comprehensive system will achieve the emission goals at lower cost. We first examine an ETS that covers both electricity and cement sectors and consider an ambitious cap starting in 2017 that will meet the official objective to reduce the carbon-GDP intensity by 60-65% by 2030 compared to 2005 levels. The two ETS-covered industries are compensated with an output-based subsidy to represent the intention to give free permits to the covered enterprises. We then consider a hybrid system where the non-ETS sectors pay a carbon tax and share in the CO2 reduction burden. Our simulations indicate that hybrid systems will achieve the same CO2 goals with lower permit prices and GDP losses. We also show how auctioning of the permits improves the efficiency of the ETS and the hybrid systems. Finally, we find that these CO2 control policies are progressive in that higher incomes households bear a bigger burden.
China’s CO2 peak before 2030 implied from diverse characteristics and growth of cities
Haikun Wang, Xi Lu, Yu Deng, Yaoguang Sun, Chris P. Nielsen, Yifan Liu, Ge Zhu, Maoliang Bu, Jun Bi, and Michael B. McElroy. 2019. “China’s CO2 peak before 2030 implied from diverse characteristics and growth of cities.” Nature Sustainability, 2, Pp. 748–754. Publisher's VersionAbstract
China pledges to peak CO2 emissions by 2030 or sooner under the Paris Agreement to limit global warming to 2 °C or less by the end of the century. By examining CO2 emissions from 50 Chinese cities over the period 2000–2016, we found a close relationship between per capita emissions and per capita gross domestic product (GDP) for individual cities, following the environmental Kuznets curve, despite diverse trajectories for CO2 emissions across the cities. Results show that carbon emissions peak for most cities at a per capita GDP (in 2011 purchasing power parity) of around US$21,000 (80% confidence interval: US$19,000 to 22,000). Applying a Monte Carlo approach to simulate the peak of per capita emissions using a Kuznets function based on China’s historical emissions, we project that emissions for China should peak at 13–16 GtCO2 yr−1 between 2021 and 2025, approximately 5–10 yr ahead of the current Paris target of 2030. We show that the challenges faced by individual types of Chinese cities in realizing low-carbon development differ significantly depending on economic structure, urban form and geographical location.
2019 Sep 05

Walking Culture in China

3:00pm

Location: 

Gund Hall, Room 121, Harvard Graduate School of Design, 42-28 Quincy Street

A dissertation defense by Yingying Lu, a Harvard Graduate School of Design doctoral candidate and incoming researcher of the Harvard-China Project.

Abstract: Walking brings wide-ranging health benefits to individuals (Hanson & Jones, 2015) and increases social interaction as well (Talen & Koschinsky, 2013). Walking, as a sustainable transportation...

Read more about Walking Culture in China
Yan Zhang, Xin Bo, Yu Zhao, and Chris P. Nielsen. 2019. “Benefits of current and future policies on emissions of China's coal-fired power sector indicated by continuous emission monitoring.” Environmental Pollution, 251, Pp. 415-424. Publisher's VersionAbstract
Emission inventories are critical to understanding the sources of air pollutants, but have high uncertainties in China due in part to insufficient on-site measurements. In this study, we developed a method of examining, screening and applying online data from the country's improving continuous emission monitoring systems (CEMS) to reevaluate a “bottom-up” emission inventory of China's coal-fired power sector. The benefits of China's current national emission standards and ultra-low emission policy for the sector were quantified assuming their full implementation. The derived national average emission factors of SO2, NOx and particulate matter (PM) were 1.00, 1.00 and 0.25 kg/t-coal respectively for 2015 based on CEMS data, smaller than those of previous studies that may not fully recognize improved emission controls in recent years. The annual emissions of SO2, NOx and PM from the sector were recalculated at 1321, 1430 and 334 Gg respectively, 75%, 63% and 76% smaller than our estimates based on a previous approach without the benefit of CEMS data. The results imply that online measurement with proper data screening can better track the recent progress of emission controls. The emission intensity (the ratio of emissions to economic output) of Northwest China was larger than that of other regions, attributed mainly to its less intensive economy and industry. Transmission of electricity to more-developed eastern provinces raised the energy consumption and emissions of less-developed regions. Judged by 95 percentiles of flue-gas concentrations measured by CEMS, most power plants met the current national emission standards in 2015 except for those in Northwest and Northeast China, while plants that met the ultra-low emission policy were much scarcer. National SO2, NOx and PM emissions would further decline by 68%, 55% and 81% respectively if the ultra-low emission policy can be strictly implemented, implying the great potential of the policy for emission abatement.
2019 Jun 01

CCICED Annual Meeting

Sat Jun 1 (All day) to Wed Jun 5 (All day)

Location: 

Hangzhou International Expo Center, Zhejiang Province, China
China Project faculty chair, Michael McElroy, who has been appointed to the China Council for International Cooperation on Environment and Development (CCICED) for a 5-year term, and Executive Director, Chris Nielsen, will be participating in the ... Read more about CCICED Annual Meeting
PNAS

中国的负碳发电

April 8, 2019

降低二氧化碳浓度、减轻大气污染

英文原文由Leah Burrows撰写。

如果想要实现《巴黎气候协定》的目标将全球气温升幅控制在前工业水平以上2摄氏度以内,那么仅仅依靠诸如风能和太阳能这种碳中和能源是远远不够的,使用负碳技术包括负碳能源来切实减少大气中的二氧化碳水平将是必不可少的。... Read more about 中国的负碳发电

Xingning Han, Xinyu Chen, Michael B. McElroy, Shiwu Liao, Chris P. Nielsen, and Jinyu Wen. 2019. “Modeling formulation and validation for accelerated simulation and flexibility assessment on large scale power systems under higher renewable penetrations.” Applied Energy, 237, Pp. 145-154. Publisher's VersionAbstract
Deploying high penetration of variable renewables represents a critical pathway for decarbonizing the power sector. Hydro power (including pumped-hydro), batteries, and fast responding thermal units are essential in providing system flexibility at elevated renewable penetration. How to quantify the merit of flexibility from these sources in accommodating variable renewables, and to evaluate the operational costs considering system flexibility constraints have been central challenges for future power system planning. This paper presents an improved linear formulation of the unit commitment model adopting unit grouping techniques to expedite evaluation of the curtailment of renewables and operational costs for large-scale power systems. All decision variables in this formulation are continuous, and all chronological constraints are formulated subsequently. Tested based on actual data from a regional power system in China, the computational speed of the model is more than 20,000 times faster than the rigorous unit commitment model, with less than 1% difference in results. Hourly simulation for an entire year takes less than 3 min. The results demonstrate strong potential to apply the proposed model to long term planning related issues, such as flexibility assessment, wind curtailment analysis, and operational cost evaluation, which could set a methodological foundation for evaluating the optimal combination of wind, solar and hydro investments.

Pages