Renewable and Low-Carbon Electric Power and Grid Integration

Haikun Wang, Xi Lu, Yu Deng, Yaoguang Sun, Chris P. Nielsen, Yifan Liu, Ge Zhu, Maoliang Bu, Jun Bi, and Michael B. McElroy. 2019. “China’s CO2 peak before 2030 implied from diverse characteristics and growth of cities.” Nature Sustainability. Publisher's VersionAbstract
China pledges to peak CO2 emissions by 2030 or sooner under the Paris Agreement to limit global warming to 2 °C or less by the end of the century. By examining CO2 emissions from 50 Chinese cities over the period 2000–2016, we found a close relationship between per capita emissions and per capita gross domestic product (GDP) for individual cities, following the environmental Kuznets curve, despite diverse trajectories for CO2 emissions across the cities. Results show that carbon emissions peak for most cities at a per capita GDP (in 2011 purchasing power parity) of around US$21,000 (80% confidence interval: US$19,000 to 22,000). Applying a Monte Carlo approach to simulate the peak of per capita emissions using a Kuznets function based on China’s historical emissions, we project that emissions for China should peak at 13–16 GtCO2 yr−1 between 2021 and 2025, approximately 5–10 yr ahead of the current Paris target of 2030. We show that the challenges faced by individual types of Chinese cities in realizing low-carbon development differ significantly depending on economic structure, urban form and geographical location.
Shi Chen, Xi Lu, Yufei Miao, Yu Deng, Chris P. Nielsen, Noah Elbot, Yuanchen Wang, Kathryn G. Logan, Michael B. McElroy, and Jiming Hao. 2019. “The Potential of Photovoltaics to Power the Belt and Road Initiative.” Joule, 3, Pp. 1-18. Publisher's VersionAbstract
Construction of carbon-intensive energy infrastructure is well underway under the Belt & Road Initiative (BRI), challenging the global climate target. Regionally abundant solar power could provide an alternative for electricity generation. An integrative spatial model was developed to evaluate the technical potential of solar photovoltaic power. The influence of impacting factors was quantified systematically on an hourly basis. Results suggest that the electricity potential for the BRI region reaches 448.9 PWh annually, 41.3 times the regional demand for electricity in 2016. Tapping 3.7% of the potential through deploying 7.8 TW capacity could satisfy the regional electricity demand projected for 2030, requiring an investment of approximately 11.2 trillion 2017 USD and a commitment in land area of 88,426 km2, approximately 0.9% of China’s total. Countries endowed with 70.7% of the overall potential consume only 30.1% of regional electricity. The imbalance underscores the advantage of regional cooperation and investments in interconnected grids.
Hongjian Wei, Wenzhi Liu, Xinyu Chen, Qing Yang, Jiashuo Li, and Hanping Chen. 2019. “Renewable bio-jet fuel production for aviation: a review.” Fuel, 254. Publisher's VersionAbstract
Due to excessive greenhouse gas emissions and high dependence on traditional petroleum jet fuel, the sustainable development of the aviation industry has drawn increasing attention worldwide. One of the most promising strategies is to develop and industrialize alternative aviation fuels produced from renewable resources, e.g. biomass. Renewable bio-jet fuel has the potential to reduce CO2 emissions over their life cycle, which make bio-jet fuels an attractive substitution for aviation fuels. This paper provided an overview on the conversion technologies, economic assessment, environmental influence and development status of bio-jet fuels. The results suggested that hydrogenated esters and fatty acids, and Fischer-Tropsch synthesis can be the most promising technologies for bio-jet fuels production in near term. Future works, such as searching for more suitable feedstock, improving competitiveness for alternative jet fuels, meeting emission reduction targets in large-scale production and making measures for the indirect impact are needed for further investigation. The large-scale deployment of bio-jet fuels could achieve significant potentials of both bio-jet fuels production and CO2 emissions reduction based on future available biomass feedstock.
PNAS

中国的负碳发电

April 8, 2019

降低二氧化碳浓度、减轻大气污染

英文原文由Leah Burrows撰写。

如果想要实现《巴黎气候协定》的目标将全球气温升幅控制在前工业水平以上2摄氏度以内,那么仅仅依靠诸如风能和太阳能这种碳中和能源是远远不够的,使用负碳技术包括负碳能源来切实减少大气中的二氧化碳水平将是必不可少的。... Read more about 中国的负碳发电

Xi Lu, Liang Cao, Haikun Wang, Wei Peng, Jia Xing, Shuxiao Wang, Siyi Cai, Bo Shen, Qing Yang, Chris P. Nielsen, and Michael B. McElroy. 2019. “Gasification of coal and biomass as a net carbon-negative power source for environment-friendly electricity generation in China.” Proceedings of the National Academy of Sciences. Publisher's VersionAbstract
Realizing the goal of the Paris Agreement to limit global warming to 2 °C by the end of this century will most likely require deployment of carbon-negative technologies. It is particularly important that China, as the world’s top carbon emitter, avoids being locked into carbon-intensive, coal-fired power-generation technologies and undertakes a smooth transition from high- to negative-carbon electricity production. We focus here on deploying a combination of coal and biomass energy to produce electricity in China using an integrated gasification cycle system combined with carbon capture and storage (CBECCS). Such a system will also reduce air pollutant emissions, thus contributing to China’s near-term goal of improving air quality. We evaluate the bus-bar electricity-generation prices for CBECCS with mixing ratios of crop residues varying from 0 to 100%, as well as associated costs for carbon mitigation and cobenefits for air quality. We find that CBECCS systems employing a crop residue ratio of 35% could produce electricity with net-zero life-cycle emissions of greenhouse gases, with a levelized cost of electricity of no more than 9.2 US cents per kilowatt hour. A carbon price of approximately $52.0 per ton would make CBECCS cost-competitive with pulverized coal power plants. Therefore, our results provide critical insights for designing a CBECCS strategy in China to harness near-term air-quality cobenefits while laying the foundation for achieving negative carbon emissions in the long run.
2019 Mar 07

China and Asia in a Changing Climate: Natural Science for the Non-Scientist

12:15pm to 1:45pm

Location: 

CGIS South S020, Belfer Case Study Room, 1730 Cambridge St., Cambridge, MA

 

 

Panelists:

  • Professor John Holdren, Teresa and John Heinz Professor of Environmental Policy, Harvard Kennedy School (HKS) and Department of Earth and Planetary Sciences, Harvard University; Co-Director of Science, Technology, and Public Policy Program, HKS; former Science Advisor to President Barack Obama and former Director of the White House Office of Science and Technology Policy
  • Professor Peter Huybers, Department of Earth and Planetary Sciences, Harvard University, and Harvard John A. Paulson School of Engineering and Applied Sciences
  • Professor Elsie Sunderland, Gordon McKay Professor of Environmental Chemistry, Harvard John A. Paulson School of Engineering and Applied Sciences and Harvard T.H. Chan School of Public Health
  • Professor Steve Wofsy, Abbott Lawrence Rotch Professor of Atmospheric and Environmental Science, Department of Earth and Planetary Sciences, Harvard University, and Harvard John A. Paulson School of Engineering and Applied Sciences

Chair: Professor Mike McElroy, Gilbert Butler Professor of Environmental Studies, Department of Earth and Planetary Sciences, Harvard University, and Harvard John A. Paulson School of Engineering and Applied Sciences; Chair, Harvard-China Project on Energy, Economy and Environment... Read more about China and Asia in a Changing Climate: Natural Science for the Non-Scientist

Xinyu Chen, Michael B. McElroy, Qiuwei Wu, Yinbiao Shu, and Yusheng Xue. 2018. “Transition towards higher penetration of renewables: an overview of interlinked technical, environmental and socio-economic challenges.” Journal of Modern Power Systems and Clean Energy. Publisher's VersionAbstract
Investment for renewables has been growing rapidly since the beginning of the new century, and the momentum is expected to sustain in order to mitigate the impact of anthropogenic climate change. Transition towards higher renewable penetration in the power industry will not only confront technical challenges, but also face socio-economic obstacles. The connected between environment and energy systems are also tightened under elevated penetration of renewables. This paper will provide an overview of some important challenges related to technical, environmental and socio-economic aspects at elevated renewable penetration. An integrated analytical framework for interlinked technical, environmental and socio-economic systems will be presented at the end.
Qing Yang, Hewen Zhou, Xiaoyan Zhang, Chris P. Nielsen, Jiashuo Li, Xi Lu, Haiping Yang, and Hanping Chen. 2018. “Hybrid life-cycle assessment for energy consumption and greenhouse gas emissions of a typical biomass gasification power plant in China.” Journal of Cleaner Production, 205, Pp. 661-671. Publisher's VersionAbstract

Among biomass energy technologies which are treated as the promising way to mitigate critical energy crisis and global climate change, biomass gasification plays a key role given to its gaseous fuels especially syngas for distributed power plant. However, a system analysis for the energy saving and greenhouse gas emissions abatement potentials of gasification system has been directed few attentions. This study presents a system analysis that combines process and input-output analyses of GHG emissions and energy costs throughout the full chain of activities associated with biomass gasification. Incorporating agricultural production, industrial process and wastewater treatment which is always ignored, the energy inputs in life cycle are accounted for the first commercial biomass gasification power plant in China. Results show that the non-renewable energy cost and GHG emission intensity of the biomass gasification system are 0.163 MJ/MJ and 0.137 kg CO2-eq/MJ respectively, which reaffirm its advantages over coal-fired power plants in clean energy and environmental terms. Compared with other biomass energy processes, gasification performs well as its non-renewable energy cost and CO2 intensity are in the central ranges of those for all of these technologies. Construction of the plant is an important factor in the process’s non-renewable energy consumption, contributing about 44.48% of total energy use. Wastewater treatment is the main contributor to GHG emissions. The biomass gasification and associated wastewater treatment technologies have critical influence on the sustainability and renewability of biomass gasification. The results provide comprehensive analysis for biomass gasification performance and technology improvement potential in regulating biomass development policies for aiming to achieve sustainability globally.

 

Xinyu Chen, Jiajun Lv, Michael B. McElroy, Xingning Han, Chris Nielsen, and Jinyu Wen. 2018. “Power system capacity expansion under higher penetration of renewables considering flexibility constraints and low carbon policies.” IEEE Transactions on Power Systems. Publisher's VersionAbstract
Deploying high penetration of variable renewables represents a critical pathway for deep decarbonizing the power sector. The conflict between their temporal variability and limited system flexibility has been largely ignored currently at planning stage. Here we present a novel capacity expansion model optimizing investment decisions and full-year, hourly power balances simultaneously, with considerations of storage technologies and policy constraints, such as carbon tax and renewable portfolio standards (RPS). Based on a computational efficient modeling formulation, all flexibility constrains (ramping, reserve, minimum output, minimal online/offline time) for the 8760-hour duration are incorporated. The proposed model is applied to the northwestern grid of China to examine the optimal composition and distribution of power investments with a wide range of renewable targets. Results indicate that the cost can increase moderately towards 45% of RPS, when properly designing the generation portfolio: prioritizing wind investments, distributing renewable investments more evenly and deploying more flexible mid-size coal and gas units. Reaching higher penetrations of renewables is expensive and the reductions of storage costs are critically important for an affordable low-carbon future. RPS or carbon taxes to reach a same target of emission reduction in China will result in similar overall costs but different generation mixes.
China ev

《金融时报》报道中国项目关于电动汽车充电方式对中国环境影响的最新研究

May 23, 2018

《金融时报》一篇文章详细探讨了电动汽车是否对中国环境有积极影响。文章认为,中国的能源市场目前依然由矿物燃料主导,尚未完成转型,电动汽车对环境会有哪些影响尚未有定论。文章引述了多篇相关领域的研究论文,包括中国项目最近发表于《自然·能源》期刊的一篇研究。这项研究由来自哈佛大学和清华大学的团队共同合作完成,成员包括哈佛大学中国项目主席Michael B. MCELROY教授、项目执行总监Chris P. NIELSEN先生、博士后研究员陈新宇,以及访问博士生吕家君。此外,哈佛大学Paulson工程与应用科学学院也就该项研究发布了...

Read more about 《金融时报》报道中国项目关于电动汽车充电方式对中国环境影响的最新研究

Pages