政策

Jing Cao, Mun S. Ho, Rong Ma, and Fei Teng. 2021. “When carbon emission trading meets a regulated industry: Evidence from the electricity sector of China.” Journal for Public Economics, 200, August 2021, Pp. 104470. Publisher's VersionAbstract
This paper provides retrospective firm-level evidence on the effectiveness of China’s carbon market pilots in reducing emissions in the electricity sector. We show that the carbon emission trading system (ETS) has no effect on changing coal efficiency of regulated coal- fired power plants. Although we find a significant reduction in coal consumption associated with ETS participation, this reduction was achieved by reducing electricity production. The output contraction in the treated plants is not due to their optimizing behavior but is likely driven by government decisions, because the impacts of emission permits on marginal costs are small relative to the controlled electricity prices and the reduction is associated with financial losses. In addition, we find no evidence of carbon leakage to other provinces, but a significant increase in the production of non-coal-fired power plants in the ETS regions. 
2021 Apr 07

Decarbonization Pathways of China’s Power Sector

10:00am to 11:15am

Location: 

Zoom - Registration required

A Harvard-China Project Research Seminar with Li Zheng, Executive Vice President of the Institute for Climate Change and Sustainable Development, Tsinghua University; Professor, Department of Energy and Power Engineering, Tsinghua University

REGISTRATION REQUIRED: 
https://harvard.zoom.us/meeting/register/tJwsdeGopj4oHtFVDnYKTCpu9EiOozMH7rFi
The Zoom link will be provided to those...

Read more about Decarbonization Pathways of China’s Power Sector
最近的出版物

最近的出版物

March 11, 2021


HCP Publications: The Harvard-China Project on Energy, Economy and Environment, based at the Harvard John A. Paulson School of Engineering and Applied Sciences, works with colleagues across Harvard and partner institutions in China to...

Read more about 最近的出版物
Jinzhao Yang, Yu Zhao, Jing Cao, and Chris P. Nielsen. 2021. “Co-benefits of carbon and pollution control policies on air quality and health till 2030 in China.” Environment International, 152, 2021. Publisher's VersionAbstract
Facing the dual challenges of climate change and air pollution, China has made great efforts to explore the co-control strategies for the both. We assessed the benefits of carbon and pollution control policies on air quality and human health, with an integrated framework combining an energy-economic model, an air quality model and a concentration–response model. With a base year 2015, seven combined scenarios were developed for 2030 based on three energy scenarios and three end-of-pipe control ones. Policy-specific benefits were then evaluated, indicated by the reduced emissions, surface concentrations of major pollutants, and premature deaths between scenarios. Compared to the 2030 baseline scenario, the nationwide PM2.5- and O3-related mortality was expected to decline 23% or 289 (95% confidence interval: 220–360) thousand in the most stringent scenario, and three quarters of the avoided deaths were attributed to the end-of-pipe control measures. Provinces in heavily polluted and densely populated regions would benefit more from carbon and pollution control strategies. The population fractions with PM2.5 exposure under the national air quality standard (35 μg/m3) and WHO guideline (10 μg/m3) would be doubled from 2015 to 2030 (the most stringent scenario), while still very few people would live in areas with the WHO guideline achieved for O3 (100 μg/m3). Increased health impact of O3 suggested a great significance of joint control of PM2.5 and O3 in future policy-making.
 
Meng Gao, Zirui Liu, Bo Zheng, Dongsheng Ji, Peter Sherman, Shaojie Song, Jinyuan Xin, Cheng Liu, Yuesi Wang, Qiang Zhang, Jia Xing, Jingkun Jiang, Zifa Wang, Gregory R. Carmichael, and Michael B. McElroy. 2021. “China's emission control strategies have suppressed unfavorable influences of climate on wintertime PM2.5 concentrations in Beijing since 2002.” Atmospheric Chemistry and Physics, 20, 3, Pp. 1497–1505. Publisher's VersionAbstract
Severe wintertime PM2.5 pollution in Beijing has been receiving increasing worldwide attention, yet the decadal variations remain relatively unexplored. Combining field measurements and model simulations, we quantified the relative influences of anthropogenic emissions and meteorological conditions on PM2.5 concentrations in Beijing over the winters of 2002–2016. Between the winters of 2011 and 2016, stringent emission control measures resulted in a 21 % decrease in mean mass concentrations of PM2.5 in Beijing, with 7 fewer haze days per winter on average. Given the overestimation of PM2.5 by the model, the effectiveness of stringent emission control measures might have been slightly overstated. With fixed emissions, meteorological conditions over the study period would have led to an increase in haze in Beijing, but the strict emission control measures have suppressed the unfavorable influences of the recent climate. The unfavorable meteorological conditions are attributed to the weakening of the East Asia winter monsoon associated particularly with an increase in pressure associated with the Aleutian Low.

Pages