环境健康

Yan Zhang, Yu Zhao, Meng Gao, Xin Bo, and Chris P. Nielsen. 2021. “Air quality and health benefits from ultra-low emission control policy indicated by continuous emission monitoring: a case study in the Yangtze River Delta region, China.” Atmospheric Chemistry and Physics, 21, Pp. 6411–6430. Publisher's VersionAbstract
To evaluate the improved emission estimates from online monitoring, we applied the Models-3/CMAQ (Community Multiscale Air Quality) system to simulate the air quality of the Yangtze River Delta (YRD) region using two emission inventories with and without incorporated data from continuous emission monitoring systems (CEMSs) at coal-fired power plants (cases 1 and 2, respectively). The normalized mean biases (NMBs) between the observed and simulated hourly concentrations of SO2, NO2, O3, and PM2.5 in case 2 were −3.1 %, 56.3 %, −19.5 %, and −1.4 %, all smaller in absolute value than those in case 1 at 8.2 %, 68.9 %, −24.6 %, and 7.6 %, respectively. The results indicate that incorporation of CEMS data in the emission inventory reduced the biases between simulation and observation and could better reflect the actual sources of regional air pollution. Based on the CEMS data, the air quality changes and corresponding health impacts were quantified for different implementation levels of China's recent “ultra-low” emission policy. If the coal-fired power sector met the requirement alone (case 3), the differences in the simulated monthly SO2, NO2, O3, and PM2.5 concentrations compared to those of case 2, our base case for policy comparisons, would be less than 7 % for all pollutants. The result implies a minor benefit of ultra-low emission control if implemented in the power sector alone, which is attributed to its limited contribution to the total emissions in the YRD after years of pollution control (11 %, 7 %, and 2 % of SO2, NOX, and primary particle matter (PM) in case 2, respectively). If the ultra-low emission policy was enacted at both power plants and selected industrial sources including boilers, cement, and iron and steel factories (case 4), the simulated SO2, NO2, and PM2.5concentrations compared to the base case would be 33 %–64 %, 16 %–23 %, and 6 %–22 % lower, respectively, depending on the month (January, April, July, and October 2015). Combining CMAQ and the Integrated Exposure Response (IER) model, we further estimated that 305 deaths and 8744 years of life loss (YLL) attributable to PM2.5 exposure could be avoided with the implementation of the ultra-low emission policy in the power sector in the YRD region. The analogous values would be much higher, at 10 651 deaths and 316 562 YLL avoided, if both power and industrial sectors met the ultra-low emission limits. In order to improve regional air quality and to reduce human health risk effectively, coordinated control of multiple sources should be implemented, and the ultra-low emission policy should be substantially expanded to major emission sources in industries other than the power industry.
Chenghe Guan and Peter G. Rowe. 2021. “Beyond big versus small: assessing spatial variation of urban neighborhood block structures in high-density cities.” Socio-Ecological Practice Research, 2021. Publisher's VersionAbstract
A striking feature of urban formation has been the deployment of mega-blocks, often on the order of sixteen hectares or more. On the other hand, recent urban policies give strong suggestions for smaller and finer-grained neighborhood block and grid arrangements. This paper explores the transformation of urban block structures in high-density cities beyond spatial conditions of big versus small blocks by emphasizing “place” making through the degree of spatial diversity and flexibility. Using spatial indices of urban block arrangements, road network efficiencies and gradients of transit network accessibility, the assessment on urban neighborhood block structure is applied to territories of central core, suburban and peripheral development in Beijing, Shanghai and Shenzhen at multiple spatial scales. The results show that the overall efficiency and flexibility of urban block structures becomes more a matter of a narrowing of the range of differing block sizes among the three territories and a concomitant higher potential capacity for adaptation to a broader range of development options. Beyond the Chinese context, in high-density cities across the globe, policies on place making should adopt a multi-scale spatial analysis strategy to measure the configuration of the overall urban block structure and guide the transformation of the city.
2021 Apr 07

Decarbonization Pathways of China’s Power Sector

10:00am to 11:15am

Location: 

Zoom - Registration required

A Harvard-China Project Research Seminar with Li Zheng, Executive Vice President of the Institute for Climate Change and Sustainable Development, Tsinghua University; Professor, Department of Energy and Power Engineering, Tsinghua University

REGISTRATION REQUIRED: 
https://harvard.zoom.us/meeting/register/tJwsdeGopj4oHtFVDnYKTCpu9EiOozMH7rFi
The Zoom link will be provided to those...

Read more about Decarbonization Pathways of China’s Power Sector
最近的出版物

最近的出版物

March 11, 2021


HCP Publications: The Harvard-China Project on Energy, Economy and Environment, based at the Harvard John A. Paulson School of Engineering and Applied Sciences, works with colleagues across Harvard and partner institutions in China to...

Read more about 最近的出版物
Jinzhao Yang, Yu Zhao, Jing Cao, and Chris P. Nielsen. 2021. “Co-benefits of carbon and pollution control policies on air quality and health till 2030 in China.” Environment International, 152, 2021. Publisher's VersionAbstract
Facing the dual challenges of climate change and air pollution, China has made great efforts to explore the co-control strategies for the both. We assessed the benefits of carbon and pollution control policies on air quality and human health, with an integrated framework combining an energy-economic model, an air quality model and a concentration–response model. With a base year 2015, seven combined scenarios were developed for 2030 based on three energy scenarios and three end-of-pipe control ones. Policy-specific benefits were then evaluated, indicated by the reduced emissions, surface concentrations of major pollutants, and premature deaths between scenarios. Compared to the 2030 baseline scenario, the nationwide PM2.5- and O3-related mortality was expected to decline 23% or 289 (95% confidence interval: 220–360) thousand in the most stringent scenario, and three quarters of the avoided deaths were attributed to the end-of-pipe control measures. Provinces in heavily polluted and densely populated regions would benefit more from carbon and pollution control strategies. The population fractions with PM2.5 exposure under the national air quality standard (35 μg/m3) and WHO guideline (10 μg/m3) would be doubled from 2015 to 2030 (the most stringent scenario), while still very few people would live in areas with the WHO guideline achieved for O3 (100 μg/m3). Increased health impact of O3 suggested a great significance of joint control of PM2.5 and O3 in future policy-making.
 
Yingying Lyu, Ann Forsyth, and Steven Worthington. 2021. “Built environment and self-rated health: comparing young, middle-aged, and older people in Chengdu, China.” Health Environments Research & Design Journal. Publisher's VersionAbstract
Objectives: This paper explores how the building-scale built environment is associated with self-rated health, examining differences in this association among younger, middle-aged, and older age groups. Features examined included building type, building condition, and sidewalk presence in front of dwellings.
Background: Understanding how the relationships between built environments and health vary across age groups helps to build a healthy environment for all. However, most studies have concentrated on the neighborhood or indoor environment, rather than whole buildings, and few have compared age groups.
Methods: This study analyzed survey data from 1,019 adults living in 40 neighborhoods in Chengdu, China, recruited through a clustered random sampling approach. It used a Bayesian logistic mixed effects model with interaction terms between age group indicators and other variables.
Results: Significant differences exist in the relationships of self-rated health with some environmental and other indicators among age groups. For older people, living in multi-floor buildings, having a household smoker, and undertaking fewer hours of weekly exercise were associated with lower odds of reporting good, very good, or excellent health. These relationships were not identified among middle-aged and younger people. More education was associated with higher odds of reporting better health among older and middle-aged groups.
Conclusions: Older people experience more health-related challenges compared to middle-aged and younger people. However, among the examined built environmental factors, building type was the only significant factor related to self-rated health among older people. To promote health among older people, this study recommends adding elevators in the multi-floor buildings.
Haikun Wang, Xiaojing He, Xinyu Liang, Ernani F. Choma, Yifan Liu, Li Shan, Haotian Zheng, Shaojun Zhang, Chris P. Nielsen, Shuxiao Wang, Ye Wu, and John S. Evans. 2020. “Health benefits of on-road transportation pollution control programs in China.” Proceedings of the National Academy of Sciences, Sept 2020, 201921271. Publisher's VersionAbstract
China started to implement comprehensive measures to mitigate traffic pollution at the end of 1990s, but the comprehensive effects, especially on ambient air quality and public health, have not yet been systematically evaluated. In this study, we analyze the effects of vehicle emission control measures on ambient air pollution and associated deaths attributable to long-term exposures of fine particulate matter (PM2.5) and O3 based on an integrated research framework that combines scenario analysis, air quality modeling, and population health risk assessment. We find that the total impact of these control measures was substantial. Vehicular emissions during 1998–2015 would have been 2–3 times as large as they actually were, had those measures not been implemented. The national population-weighted annual average concentrations of PM2.5 and O3 in 2015 would have been higher by 11.7 μg/m3 and 8.3 parts per billion, respectively, and the number of deaths attributable to 2015 air pollution would have been higher by 510 thousand (95% confidence interval: 360 thousand to 730 thousand) without these controls. Our analysis shows a concentration of mortality impacts in densely populated urban areas, motivating local policymakers to design stringent vehicle emission control policies. The results imply that vehicle emission control will require policy designs that are more multifaceted than traditional controls, primarily represented by the strict emission standards, with careful consideration of the challenges in coordinated mitigation of both PM2.5 and O3 in different regions, to sustain improvement in air quality and public health given continuing swift growth in China’s vehicle population.
James K. Hammitt, Fangli Geng, Xiaoqi Guo, and Chris P. Nielsen. 2019. “Valuing mortality risk in China: Comparing stated-preference estimates from 2005 and 2016.” Journal of Risk & Uncertainty, 58, 2-3, Pp. 167–186. Publisher's VersionAbstract
We estimate the marginal rate of substitution of income for reduction in current annual mortality risk (the “value per statistical life” or VSL) using stated-preference surveys administered to independent samples of the general population of Chengdu, China in 2005 and 2016. We evaluate the quality of estimates by the theoretical criteria that willingness to pay (WTP) for risk reduction should be strictly positive and nearly proportional to the magnitude of the risk reduction (evaluated by comparing answers between respondents) and test the effect of excluding respondents whose answers violate these criteria. For subsamples of respondents that satisfy the criteria, point estimates of the sensitivity of WTP to risk reduction are consistent with theory and yield estimates of VSL that are two to three times larger than estimated using the full samples. Between 2005 and 2016, estimated VSL increased sharply, from about 22,000 USD in 2005 to 550,000 USD in 2016. Income also increased substantially over this period. Attributing the change in VSL solely to the change in real income implies an income elasticity of about 3.0. Our results suggest that estimates of VSL from stated-preference studies in which WTP is not close to proportionate to the stated risk reduction may be biased downward by a factor of two or more, and that VSL is likely to grow rapidly in a population with strong economic growth, which implies that environmental-health, safety, and other policies should become increasingly protective.

Pages