能源与电网

Xingning Han, Xinyu Chen, Michael B. McElroy, Shiwu Liao, Chris P. Nielsen, and Jinyu Wen. 2019. “Modeling formulation and validation for accelerated simulation and flexibility assessment on large scale power systems under higher renewable penetrations.” Applied Energy, 237, Pp. 145-154. Publisher's VersionAbstract
Deploying high penetration of variable renewables represents a critical pathway for decarbonizing the power sector. Hydro power (including pumped-hydro), batteries, and fast responding thermal units are essential in providing system flexibility at elevated renewable penetration. How to quantify the merit of flexibility from these sources in accommodating variable renewables, and to evaluate the operational costs considering system flexibility constraints have been central challenges for future power system planning. This paper presents an improved linear formulation of the unit commitment model adopting unit grouping techniques to expedite evaluation of the curtailment of renewables and operational costs for large-scale power systems. All decision variables in this formulation are continuous, and all chronological constraints are formulated subsequently. Tested based on actual data from a regional power system in China, the computational speed of the model is more than 20,000 times faster than the rigorous unit commitment model, with less than 1% difference in results. Hourly simulation for an entire year takes less than 3 min. The results demonstrate strong potential to apply the proposed model to long term planning related issues, such as flexibility assessment, wind curtailment analysis, and operational cost evaluation, which could set a methodological foundation for evaluating the optimal combination of wind, solar and hydro investments.
2019 Mar 07

China and Asia in a Changing Climate: Natural Science for the Non-Scientist

12:15pm to 1:45pm

Location: 

CGIS South S020, Belfer Case Study Room, 1730 Cambridge St., Cambridge, MA

 

 

Panelists:

  • Professor John Holdren, Teresa and John Heinz Professor of Environmental Policy, Harvard Kennedy School (HKS) and Department of Earth and Planetary Sciences, Harvard University; Co-Director of Science, Technology, and Public Policy Program, HKS; former Science Advisor to President Barack Obama and former Director of the White House Office of Science and Technology Policy
  • Professor Peter Huybers, Department of Earth and Planetary Sciences, Harvard University, and Harvard John A. Paulson School of Engineering and Applied Sciences
  • Professor Elsie Sunderland, Gordon McKay Professor of Environmental Chemistry, Harvard John A. Paulson School of Engineering and Applied Sciences and Harvard T.H. Chan School of Public Health
  • Professor Steve Wofsy, Abbott Lawrence Rotch Professor of Atmospheric and Environmental Science, Department of Earth and Planetary Sciences, Harvard University, and Harvard John A. Paulson School of Engineering and Applied Sciences

Chair: Professor Mike McElroy, Gilbert Butler Professor of Environmental Studies, Department of Earth and Planetary Sciences, Harvard University, and Harvard John A. Paulson School of Engineering and Applied Sciences; Chair, Harvard-China Project on Energy, Economy and Environment... Read more about China and Asia in a Changing Climate: Natural Science for the Non-Scientist

Meng Gao, Gufran Beig, Shaojie Song, Hongliang Zhang, Jianlin Hu, Qi Ying, Fengchao Liang, Yang Liu, Haikun Wang, Xiao Lu, Tong Zhu, Gregory Carmichael, Chris P. Nielsen, and Michael B. McElroy. 2018. “The Impact of Power Generation Emissions on Ambient PM2.5 Pollution and Human Health in China and India.” Environment International, 121, Part 1, Pp. 250-259. Publisher's VersionAbstract

Emissions from power plants in China and India contain a myriad of fine particulate matter (PM2.5, PM≤2.5 micrometers in diameter) precursors, posing significant health risks among large, densely settled populations. Studies isolating the contributions of various source classes and geographic regions are limited in China and India, but such information could be helpful for policy makers attempting to identify efficient mitigation strategies. We quantified the impact of power generation emissions on annual mean PM2.5 concentrations using the state-of-the-art atmospheric chemistry model WRF-Chem (Weather Research Forecasting model coupled with Chemistry) in China and India. Evaluations using nationwide surface measurements show the model performs reasonably well. We calculated province-specific annual changes in mortality and life expectancy due to power generation emissions generated PM2.5 using the Integrated Exposure Response (IER) model, recently updated IER parameters from Global Burden of Disease (GBD) 2015, population data, and the World Health Organization (WHO) life tables for China and India. We estimate that 15 million (95% Confidence Interval (CI): 10 to 21 million) years of life lost can be avoided in China each year and 11 million (95% CI: 7 to 15 million) in India by eliminating power generation emissions. Priorities in upgrading existing power generating technologies should be given to Shandong, Henan, and Sichuan provinces in China, and Uttar Pradesh state in India due to their dominant contributions to the current health risks.

 

Qing Yang, Hewen Zhou, Xiaoyan Zhang, Chris P. Nielsen, Jiashuo Li, Xi Lu, Haiping Yang, and Hanping Chen. 2018. “Hybrid life-cycle assessment for energy consumption and greenhouse gas emissions of a typical biomass gasification power plant in China.” Journal of Cleaner Production, 205, Pp. 661-671. Publisher's VersionAbstract

Among biomass energy technologies which are treated as the promising way to mitigate critical energy crisis and global climate change, biomass gasification plays a key role given to its gaseous fuels especially syngas for distributed power plant. However, a system analysis for the energy saving and greenhouse gas emissions abatement potentials of gasification system has been directed few attentions. This study presents a system analysis that combines process and input-output analyses of GHG emissions and energy costs throughout the full chain of activities associated with biomass gasification. Incorporating agricultural production, industrial process and wastewater treatment which is always ignored, the energy inputs in life cycle are accounted for the first commercial biomass gasification power plant in China. Results show that the non-renewable energy cost and GHG emission intensity of the biomass gasification system are 0.163 MJ/MJ and 0.137 kg CO2-eq/MJ respectively, which reaffirm its advantages over coal-fired power plants in clean energy and environmental terms. Compared with other biomass energy processes, gasification performs well as its non-renewable energy cost and CO2 intensity are in the central ranges of those for all of these technologies. Construction of the plant is an important factor in the process’s non-renewable energy consumption, contributing about 44.48% of total energy use. Wastewater treatment is the main contributor to GHG emissions. The biomass gasification and associated wastewater treatment technologies have critical influence on the sustainability and renewability of biomass gasification. The results provide comprehensive analysis for biomass gasification performance and technology improvement potential in regulating biomass development policies for aiming to achieve sustainability globally.

 

Xinyu Chen, Jiajun Lv, Michael B. McElroy, Xingning Han, Chris Nielsen, and Jinyu Wen. 2018. “Power system capacity expansion under higher penetration of renewables considering flexibility constraints and low carbon policies.” IEEE Transactions on Power Systems, 33, 6, Pp. 6240-6253. Publisher's VersionAbstract
Deploying high penetration of variable renewables represents a critical pathway for deep decarbonizing the power sector. The conflict between their temporal variability and limited system flexibility has been largely ignored currently at planning stage. Here we present a novel capacity expansion model optimizing investment decisions and full-year, hourly power balances simultaneously, with considerations of storage technologies and policy constraints, such as carbon tax and renewable portfolio standards (RPS). Based on a computational efficient modeling formulation, all flexibility constrains (ramping, reserve, minimum output, minimal online/offline time) for the 8760-hour duration are incorporated. The proposed model is applied to the northwestern grid of China to examine the optimal composition and distribution of power investments with a wide range of renewable targets. Results indicate that the cost can increase moderately towards 45% of RPS, when properly designing the generation portfolio: prioritizing wind investments, distributing renewable investments more evenly and deploying more flexible mid-size coal and gas units. Reaching higher penetrations of renewables is expensive and the reductions of storage costs are critically important for an affordable low-carbon future. RPS or carbon taxes to reach a same target of emission reduction in China will result in similar overall costs but different generation mixes.
China ev

《金融时报》报道中国项目关于电动汽车充电方式对中国环境影响的最新研究

May 23, 2018

《金融时报》一篇文章详细探讨了电动汽车是否对中国环境有积极影响。文章认为,中国的能源市场目前依然由矿物燃料主导,尚未完成转型,电动汽车对环境会有哪些影响尚未有定论。文章引述了多篇相关领域的研究论文,包括中国项目最近发表于《自然·能源》期刊的一篇研究。这项研究由来自哈佛大学和清华大学的团队共同合作完成,成员包括哈佛大学中国项目主席Michael B. MCELROY教授、项目执行总监Chris P. NIELSEN先生、博士后研究员陈新宇,以及访问博士生吕家君。此外,哈佛大学Paulson工程与应用科学学院也就该项研究发布了...

Read more about 《金融时报》报道中国项目关于电动汽车充电方式对中国环境影响的最新研究
Xinyu Chen, Junling Huang, Qing Yang, Chris P. Nielsen, Dongbo Shi, and Michael B. McElroy. 2018. “Changing carbon content of Chinese coal and implications for emissions of CO2.” Journal of Cleaner Production, 194, Pp. 150-157. Publisher's VersionAbstract
The changing carbon content of coal consumed in China between 2002 and 2012 is quantified using information from the power sector. The carbon content decreased by 7.7% over this interval, the decrease particularly pronounced between 2007 and 2009. Inferences with respect to the changing carbon content of coal and the oxidation rate for its consumption, combined with the recent information on coal use in China, are employed to evaluate the trend in emissions of CO2. Emissions are estimated to have increased by 158% between 2002 and 2012, from 3.9 Gt y-1 to 9.2 Gt y-1. Our estimated emissions for 2005 are notably consistent with data reported by China in its “Second National Communication” to the UN (NDRC, 2012) and significantly higher than the estimation published recently in Nature. The difference is attributed, among other factors, to the assumption of a constant carbon content of coal in the latter study. The results indicate that CO2 emissions of China in 2005 reported by Second National Communication are more reliable to serve as the baseline for China's future carbon commitments (e.g. those in Paris Agreement of the UNFCCC). Discrepancies between national and provincial statistics on coal production and consumption are investigated and attributed primarily to anomalous reporting on interprovincial trade in four heavily industrialized provinces.
china

2018年春季学期新闻通讯

May 22, 2018

2018年春季学期,哈佛大学中国项目继续推进由哈佛环球学院资助的“中国2030/2050计划”,探究了一批迫在眉睫的课题,包括在《自然·Ÿ能源》期刊上发表了关于电动车充电方式对中国环境有何影响的论文。这项研究由来自哈佛大学和清华大学的科学家们共同合作完成,论文联合作者包括哈佛大学中国项目主席Michael B. McElroy教授、项目执行总监Chris P. Nielsen先生、环境科学于工程研究员陈新宇博士,以及张宏才博士、徐志伟和吕佳君。

哈佛大学中国项目也在《自然Ÿ·科学报告》期刊发表了另一篇论文,提出气候变化可能是导致中国风能潜力下降的因素之一。中国项目特此采访了该文联合作者之一博士研究生Peter Sherman,...

Read more about 2018年春季学期新闻通讯

Pages