能源与电网

2012
Xi Lu, Jackson Salovaara, and Michael B. McElroy. 2012. “Implications of the recent reductions in natural gas prices for emissions of CO2 from the US power sector.” Environmental Science & Technology, 46, 5, Pp. 3014–3021. Publisher's VersionAbstract
CO2 emissions from the US power sector decreased by 8.76% in 2009 relative to 2008 contributing to a decrease over this period of 6.59% in overall US emissions of greenhouse gases. An econometric model, tuned to data reported for regional generation of US electricity, is used to diagnose factors responsible for the 2009 decrease. More than half of the reduction is attributed to a shift from generation of power using coal to gas driven by a recent decrease in gas prices in response to the increase in production from shale. An important result of the model is that, when the cost differential for generation using gas rather than coal falls below 2–3 cents/kWh, less efficient coal fired plants are displaced by more efficient natural gas combined cycle (NGCC) generation alternatives. Costs for generation using NGCC decreased by close to 4 cents/kWh in 2009 relative to 2008 ensuring that generation of electricity using gas was competitive with coal in 2009 in contrast to the situation in 2008 when gas prices were much higher. A modest price on carbon could contribute to additional switching from coal to gas with further savings in CO2 emissions.

Final Manuscript in DASH
This paper is from a series investigating and comparing the prospects for low- and non-carbon power generation in China and the U.S.; click here (http://news.harvard.edu/gazette/story/2012/02/model-situation/) to see coverage in the Harvard Gazette.

2011
Xi Lu, Michael B. McElroy, and Nora Sluzas. 2011. “Costs for integrating wind into the future ERCOT system with related costs for savings in CO2 emissions.” Environmental Science and Technology, 45, 7, Pp. 3160-3166. Publisher's VersionAbstract
Wind power can make an important contribution to the goal of reducing emissions of CO2. The major problem relates to the intrinsic variability of the source and the difficulty of reconciling the supply of electricity with demand particularly at high levels of wind penetration. This challenge is explored for the case of the ERCOT system in Texas. Demand for electricity in Texas is projected to increase by approximately 60% by 2030. Considering hourly load data reported for 2006, assuming that the pattern of demand in 2030 should be similar to 2006, and adopting as a business as usual (BAU) reference an assumption that the anticipated additional electricity should be supplied by a combination of coal and gas with prices, discounted to 2007 dollars of $2 and $6 per MMBTU respectively, we conclude that the bus-bar price for electricity would increase by about 1.1¢/kWh at a wind penetration level of 30%, by about 3.4 ¢/kWh at a penetration level of 80%. Corresponding costs for reductions in CO2 range from $20/ton to $60/ton. A number of possibilities are discussed that could contribute to a reduction in these costs including the impact of an expanded future fleet of electrically driven vehicles.

Final Manuscript in DASH
This is from a series of papers investigating and comparing the prospects for low- and non-carbon power generation in China and the U.S.

Michael B. McElroy. 2011. Energy: Perspectives, Problems and Prospects (Chinese Language Edition). Beijing: Science Press. Publisher's Version
Xi Lu, Jeremy Tchou, Michael B. McElroy, and Chris P Nielsen. 2011. “The impact of production tax credits on the profitable production of electricity from wind in the U.S.” Energy Policy, 39, 7, Pp. 4207-4214. Publisher's VersionAbstract
A spatial financial model using wind data derived from assimilated meteorological condition was developed to investigate the profitability and competitiveness of onshore wind power in the contiguous U.S. It considers not only the resulting estimated capacity factors for hypothetical wind farms but also the geographically differentiated costs of local grid connection. The levelized cost of wind-generated electricity for the contiguous U.S. is evaluated assuming subsidy levels from the Production Tax Credit (PTC) varying from 0 to 4 ¢/kWh under three cost scenarios: a reference case, a high cost case, and a low cost case. The analysis indicates that in the reference scenario, current PTC subsidies of 2.1 ¢/kWh are at a critical level in determining the competitiveness of wind-generated electricity compared to conventional power generation in local power market. Results from this study suggest that the potential for profitable wind power with the current PTC subsidy amounts to more than seven times existing demand for electricity in the entire U.S. Understanding the challenges involved in scaling up wind energy requires further study of the external costs associated with improvement of the backbone transmission network and integration into the power grid of the variable electricity generated from wind.

This paper is from a series investigating and comparing the prospects for low- and non-carbon power generation in China and the U.S.

2010
Michael B. McElroy. 2010. “Challenge of global climate change: Prospects for a new energy paradigm.” Frontiers of Environmental Science & Engineering in China , 4, 1, Pp. 2-11. Publisher's VersionAbstract
Perspectives on the challenge posed by potential future climate change are presented including a discussion of prospects for carbon capture followed either by sequestration or reuse including opportunities for alternatives to the use of oil in the transportation sector. The potential for wind energy as an alternative to fossil fuel energy as a source of electricity is outlined including the related opportunities for cost effective curtailment of future growth in emissions of CO2.
Xi Lu. 2010. “Electricity from Wind: Opportunities and Challenges.” School of Engineering and Applied Sciences, Harvard University.
Michael B. McElroy. 2010. Energy: Perspectives, Problems and Prospects. Oxford: Oxford University Press. Publisher's VersionAbstract
The book offers a comprehensive account of how the world evolved to its present state in which humans now exercise a powerful, in many cases dominant, influence for global environmental change. It outlines the history that led to this position of dominance, in particular the role played by our increasing reliance on fossil sources of energy, on coal, oil and natural gas, and the problems that we are now forced to confront as a result of this history. The concentration of carbon dioxide in the atmosphere is greater now than at any time over at least the past 650,000 years with prospects to increase over the next few decades to levels not seen since dinosaurs roamed the Earth 65 million years ago. Comparable changes are evident also for methane and nitrous oxide and for a variety of other constituents of the atmosphere including species such as the ozone depleting chlorofluorocarbons for which there are no natural analogues.

Increases in the concentrations of so-called greenhouse gases in the atmosphere are responsible for important changes in global and regional climate with consequences for the future of global society which, though difficult to predict in detail, are potentially catastrophic for a world poorly equipped to cope. Changes of climate in the past were repetitively responsible for the demise of important civilizations. These changes, however, were generally natural in origin in contrast to the changes now underway for which humans are directly responsible. The challenge is to transition to a new energy economy in which fossil fuels will play a much smaller role. We need as a matter of urgency to cut back on emissions of climate altering gases such as carbon dioxide while at the same time reducing our dependence on unreliable, potentially disruptive, though currently indispensable, sources of energy such as oil, the lifeblood of the global transportation system. The book concludes with a discussion of options for a more sustainable energy future, highlighting the potential for contributions from wind, sun, biomass, geothermal and nuclear, supplanting currently unsustainable reliance on coal, oil and natural gas.
Yu Zhao, Shuxiao Wang, Chris P Nielsen, Xinghua Li, and Jiming Hao. 2010. “Establishment of a database of emission factors for atmospheric pollutant emissions from Chinese coal-fired power plants.” Atmospheric Environment, 44, 12, Pp. 1515-1523. Publisher's VersionAbstract
Field measurements and data investigations were conducted for developing an emission factor database for inventories of atmospheric pollutants from Chinese coal-fired power plants. Gaseous pollutants and particulate matter (PM) of different size fractions were measured using a gas analyzer and an electric low-pressure impactor (ELPI), respectively, for ten units in eight coal-fired power plants across the country. Combining results of field tests and literature surveys, emission factors with 95% confidence intervals (CIs) were calculated by boiler type, fuel quality, and emission control devices using bootstrap and Monte Carlo simulations. The emission factor of uncontrolled SO2 from pulverized combustion (PC) boilers burning bituminous or anthracite coal was estimated to be 18.0S kg t−1 (i.e., 18.0 × the percentage sulfur content of coal, S) with a 95% CI of 17.2S–18.5S. NOX emission factors for pulverized-coal boilers ranged from 4.0 to 11.2 kg t−1, with uncertainties of 14–45% for different unit types. The emission factors of uncontrolled PM2.5, PM10, and total PM emitted by PC boilers were estimated to be 0.4A (where A is the percentage ash content of coal), 1.5A and 6.9A kg t−1, respectively, with 95% CIs of 0.3A–0.5A, 1.1A–1.9A and 5.8A–7.9A. The analogous PM values for emissions with electrostatic precipitator (ESP) controls were 0.032A (95% CI: 0.021A–0.046A), 0.065A (0.039A–0.092A) and 0.094A (0.0656A–0.132A) kg t−1, and 0.0147A (0.0092–0.0225A), 0.0210A (0.0129A–0.0317A), and 0.0231A (0.0142A–0.0348A) for those with both ESP and wet flue-gas desulfurization (wet-FGD). SO2 and NOX emission factors for Chinese power plants were smaller than those of U.S. EPA AP-42 database, due mainly to lower heating values of coals in China. PM emission factors for units with ESP, however, were generally larger than AP-42 values, because of poorer removal efficiencies of Chinese dust collectors. For units with advanced emission control technologies, more field measurements are needed to reduce emission factor uncertainties.
2009
Xi Lu, Michael B. McElroy, and Juha Kiviluoma. 2009. “Global potential for wind generated electricity.” Proceedings of the National Academy of Sciences, 106, 27, Pp. 10933-10938s. Publisher's VersionAbstract

The potential of wind power as a global source of electricity is assessed by using winds derived through assimilation of data from a variety of meteorological sources. The analysis indicates that a network of land-based 2.5-megawatt (MW) turbines restricted to nonforested, ice-free, nonurban areas operating at as little as 20% of their rated capacity could supply >40 times current worldwide consumption of electricity, >5 times total global use of energy in all forms. Resources in the contiguous United States, specifically in the central plain states, could accommodate as much as 16 times total current demand for electricity in the United States. Estimates are given also for quantities of electricity that could be obtained by using a network of 3.6-MW turbines deployed in ocean waters with depths <200 m within 50 nautical miles (92.6 km) of closest coastlines.

Wind power accounted for 42% of all new electrical capacity added to the United States electrical system in 2008 although wind continues to account for a relatively small fraction of the total electricity-generating capacity [25.4 gigawatts (GW) of a total of 1,075 GW] (ref. 1; www.awea.org/pubs/documents/Outlook_2009.pdf). The Global Wind Energy Council projected the possibility of a 17-fold increase in wind-powered generation of electricity globally by 2030 (ref. 2; www.gwec.net/fileadmin/documents/Publications/GWEO_2008_final.pdf). Short et al. (3), using the National Renewable Energy Laboratory's WinDs model, concluded that wind could account for as much as 25% of U.S. electricity by 2050 (corresponding to an installed wind capacity of ≈300 GW).

Archer and Jacobson (4) estimated that 20% of the global total wind power potential could account for as much as 123 petawatt-hours (PWh) of electricity annually [corresponding to annually averaged power production of 14 terawatts (TW)] equal to 7 times the total current global consumption of electricity (comparable to present global use of energy in all forms). Their study was based on an analysis of data for the year 2000 from 7,753 surface meteorological stations complemented by data from 446 stations for which vertical soundings were available. They restricted their attention to power that could be generated by using a network of 1.5-megawatt (MW) turbines tapping wind resources from regions with annually averaged wind speeds in excess of 6.9 m/s (wind class 3 or better) at an elevation of 80 m. The meteorological stations used in their analysis were heavily concentrated in the United States, Europe, and Southeastern Asia. Results inferred for other regions of the world are subject as a consequence to considerable uncertainty.

The present study is based on a simulation of global wind fields from version 5 of the Goddard Earth Observing System Data Assimilation System (GEOS-5 DAS). Winds included in this compilation were obtained by retrospective analysis of global meteorological data using a state-of-the-art weather/climate model incorporating inputs from a wide variety of observational sources (5), including not only surface and sounding measurements as used by Archer and Jacobson (4) but also results from a diverse suite of measurements and observations from a combination of aircraft, balloons, ships, buoys, dropsondes and satellites, in short the gamut of observational data used to provide the world with the best possible meteorological forecasts enhanced by application of these data in a retrospective analysis. The GEOS-5 wind field is currently available for the period 2004 to the present (March 20, 2009) with plans to extend the analysis 30 years back in time. The GEOS-5 assimilation was adopted in the present analysis to take advantage of the relatively high spatial resolution available with this product as compared with the lower spatial resolutions available with alternative products such as ERA-40, NECP II, and JRA-25. It is used here in a detailed study of the potential for globally distributed wind-generated electricity in 2006.

We begin with a description of the methodology adopted for the present study. The land-based turbines envisaged here are assumed to have a rated capacity of 2.5 MW with somewhat larger turbines, 3.6 MW, deployed offshore, reflecting the greater cost of construction and the economic incentive to deploy larger turbines to capture the higher wind speeds available in these regions. In siting turbines over land, we specifically excluded densely populated regions and areas occupied by forests and environments distinguished by permanent snow and ice cover (notably Greenland and Antarctica). Turbines located offshore were restricted to water depths <200 m and to distances within 92.6 km (50 nautical miles) of shore.

These constraints are then discussed, and results from the global analysis are presented followed by a more detailed discussion of results for the United States.

Potential for wind generated electricity in China
Michael B. McElroy, Xi Lu, Chris P Nielsen, and Yuxuan Wang. 2009. “Potential for wind generated electricity in China.” Science, 325, 5946, Pp. 1378-1380. Publisher's VersionAbstract
Wind offers an important alternative to coal as a source of energy for generation of electricity in China with the potential for substantial savings in carbon dioxide emissions. Wind fields derived from assimilated meteorological data are used to assess the potential for wind-generated electricity in China subject to the existing government-approved bidding process for new wind farms. Assuming a guaranteed price of 0.516 RMB (7.6 U.S. cents) per kilowatt-hour for delivery of electricity to the grid over an agreed initial average period of 10 years, it is concluded that wind could accommodate all of the demand for electricity projected for 2030, about twice current consumption. Electricity available at a concession price as low as 0.4 RMB per kilowatt-hour would be sufficient to displace 23% of electricity generated from coal.

Final Manuscript in DASH
This paper was the cover article of this issue of Science; click here (http://www.sciencemag.org/content/325/5946.cover-expansion) to see the cover image of wind turbines near the Great Wall of China.

2007
Chris P Nielsen and Mun S Ho. 2007. “Air pollution and health damages in China: An introduction and review.” In Clearing the air: The health and economic damages of air pollution in China, edited by Chris P Nielsen and Mun S Ho. Cambridge, MA: MIT Press. Publisher's VersionAbstract
An interdisciplinary, quantitative assessment of the health and economic costs of air pollution in China, and of market-based policies to build environmental protection into economic development.
Clearing the air: The health and economic damages of air pollution in China
2007. Clearing the air: The health and economic damages of air pollution in China. Cambridge, MA: MIT Press. Publisher's VersionAbstract
An interdisciplinary, quantitative assessment of the health and economic costs of air pollution in China, and of market-based policies to build environmental protection into economic development.
Yi-Ming Wei, Lan-Cui Liu, Ying Fan, and Gang Wu. 2007. “The impact of lifestyle on energy use and CO2 emission: An empirical analysis of China’s residents.” Energy Policy, 35, 1, Pp. 247-257. Publisher's VersionAbstract
Based on the application of a Consumer Lifestyle Approach (CLA), this paper quantifies the direct and indirect impact of lifestyle of urban and rural residents on China's energy use and the related CO2 emissions during the period 1999–2002. The results show that approximately 26 per cent of total energy consumption and 30 per cent of CO2 emission every year are a consequence of residents’ lifestyles, and the economic activities to support these demands. For urban residents the indirect impact on energy consumption is 2.44 times greater than the direct impact. Residence; home energy use; food; and education, cultural and recreation services are the most energy-intensive and carbon-emission-intensive activities. For rural residents, the direct impact on energy consumption is 1.86 times that of the indirect, and home energy use; food; education, and cultural recreation services; and personal travel are the most energy-intensive and carbon-emission-intensive activities. This paper provides quantitative evidence for energy conservation and environmental protection focused policies. China's security for energy supply is singled out as a serious issue for government policy-makers, and we suggest that government should harmonize the relationships between stakeholders to determine rational strategies.
Yuan Hu. 2007. “Implementation of voluntary agreements for energy efficiency in China.” Energy Policy, 35, 11, Pp. 5541-5548. Publisher's VersionAbstract
Low-energy efficiency and environmental pollution have long been taken as key problems of Chinese industry, although a number of command-and-control and economic instruments have been adopted in the last few decades. In this paper, policy and legislation development for voluntary agreements were summarized. The voluntary agreements pilot project in two iron and steel companies in Shandong Province as well as other cases were analyzed. In order to identify the existing problems in Chinese cases, comparison was made between China and industrialized countries in the practices of energy efficiency voluntary agreements. Based on the analysis, detained recommendations, including the use of supporting policies for voluntary agreements, were raised. It is expected that voluntary agreements could play a more important role in energy efficiency improvement of Chinese industry.
Bingjiang Liu and Jiming Hao. 2007. “Local population exposure to pollutants from the electric power sector.” In Clearing the air: The health and economic damages of air pollution in China, edited by Mun S Ho and Chris P Nielsen. Cambridge, MA: MIT Press. Publisher's VersionAbstract
An interdisciplinary, quantitative assessment of the health and economic costs of air pollution in China, and of market-based policies to build environmental protection into economic development.
Shuxiao Wang, Jiming Hao, Yongqi Lu, and Ji Li. 2007. “Local population exposure to pollutants from the major industrial sectors.” In Clearing the air: The health and economic damages of air pollution in China, edited by Mun S Ho and Chris P Nielsen. Cambridge, MA: MIT Press. Publisher's VersionAbstract
An interdisciplinary, quantitative assessment of the health and economic costs of air pollution in China, and of market-based policies to build environmental protection into economic development.
Ying Zhou, Jonathan I Levy, James K Hammitt, and John S Evans. 2007. “Population exposure to pollutants from the electric power sector using CALPUFF.” In Clearing the air: The health and economic damages of air pollution in China, edited by Mun S Ho and Chris P Nielsen. Cambridge, MA: MIT Press. Publisher's VersionAbstract
An interdisciplinary, quantitative assessment of the health and economic costs of air pollution in China, and of market-based policies to build environmental protection into economic development.
Chris P Nielsen and Mun S Ho. 2007. “Summary for policy.” In Clearing the air: The health and economic damages of air pollution in China, edited by Mun S Ho and Chris P Nielsen. Cambridge, MA: MIT Press. Publisher's VersionAbstract
An interdisciplinary, quantitative assessment of the health and economic costs of air pollution in China, and of market-based policies to build environmental protection into economic development.
Chris P Nielsen and Mun S Ho. 2007. “Summary for research.” In Clearing the air: The health and economic damages of air pollution in China, edited by Mun S Ho and Chris P Nielsen. Cambridge, MA: MIT Press. Publisher's VersionAbstract
An interdisciplinary, quantitative assessment of the health and economic costs of air pollution in China, and of market-based policies to build environmental protection into economic development.
2006
Sue J. Lin, I.J. Lu, and Charles Lewis. 2006. “Identifying key factors and strategies for reducing industrial CO2 emissions from a non-Kyoto protocol member’s (Taiwan) perspective.” Energy Policy, 34, Pp. 1499-1507. Publisher's VersionAbstract
In this study we use Divisia index approach to identify key factors affecting CO2 emission changes of industrial sectors in Taiwan. The changes of CO2 emission are decomposed into emission coefficient, energy intensity, industrial structure and economic growth. Furthermore, comparisons with USA, Japan, Germany, the Netherlands and South Korea are made to have a better understanding of emission tendency in these countries and to help formulate our CO2 reduction strategies for responding to the international calls for CO2 cuts. The results show that economic growth and high energy intensity were two key factors for the rapid increase of industrial CO2 emission in Taiwan, while adjustment of industrial structure was the main component for the decrease. Although economic development is important, Taiwan must keep pace with the international trends for CO2 reduction. Among the most important strategies are continuous efforts to improve energy intensity, fuel mix toward lower carbon, setting targets for industrial CO2 cuts, and advancing green technology through technology transfer. Also, the clean development mechanism (CDM) is expected to play an important role in the future.

Pages