%0 Journal Article %J Journal of Cleaner Production %D 2018 %T Tracing natural resource uses via China's supply chains %A Bo Zhang %A Shihui Guan %A Xiaofang Wu %A Xueli Zhao %X This paper makes an in-depth analysis on demand-driven natural resource requirements in China via the methods of thermodynamic input-output analysis and structural path analysis, in order to reveal the connections between the country's rapid economic development and its intensive use of natural resources. The main natural resources investigated include crops, forestry, rangeland, aquatic products, coal, crude oil & natural gas, ferrous metal ores, nonferrous metal ores, nonmetallic minerals and other primary energy, and exergy is adopted as a common metric for the resource accounting. In 2012, the total domestic resource exergy input into Chinese economic system amounted to 130.1 EJ, of which 44.6% was induced by investment demands. The embodied resource use (ERU) in China's exports was equivalent to over one fifth of its domestic resource supply. The two integrative sectors of Manufacturing and Construction accounted for 44.1% and 28.7% of the national total ERU, respectively. We identified critical supply chain paths starting from resource extraction to final demand, as well as key industrial sectors in driving the extraction, transmission and final use of embodied resources. The top 50 paths were responsible for 30.4 EJ of the ERU. The identification of resource supply chains from a systemic perspective is of great importance when resource and environmental policies are to be applied to concrete industrial sectors and other economic agents. Integrated approaches that take account of consumption-based resource indicators should be developed for resource conservation and cleaner production, particularly for the economic system with a complex supply network. %B Journal of Cleaner Production %V 196 %P 880-888 %G eng %U https://www.sciencedirect.com/science/article/pii/S0959652618317591