Atmospheric Emissions

2009
Jing Cao, Richard Garbaccio, and Mun S Ho. 2009. “China's 11th Five-Year Plan and the environment: Reducing SO2 emissions.” Review of Environmental Economics and Policy, 3, 2, Pp. 189-208. Publisher's VersionAbstract
China's rapid economic growth has been accompanied by a high level of environmental degradation. One of the major sources of health and ecosystem damages is sulfur dioxide (SO2). Reducing SO2 emissions is a priority of China's environmental authorities, and the 11th Five-Year Plan (2006–2010) includes the target of reducing total SO2 emissions by 10 percent from the 2005 level. Given the rapid increase in SO2 emissions that is expected to occur in absence of intervention, attaining this target will require a significant effort. This article examines the two major policy measures the government is taking to achieve the SO2 target: a shutdown of many small, inefficient power plants and the installation of desulfurization equipment on existing and new coal-fired plants. We present results from a joint U.S.–China study that we participated in, which estimated the costs and benefits of these policies. We then estimate the economy-wide impacts of the two policies using a multisector model of the Chinese economy. We find that in the aggregate, the economic benefits of the shutdown of the small power plants are large enough to offset the costs of the desulfurization equipment, even without considering the substantial environmental benefits from the reduction of emissions of SO2 and other pollutants.
Yu Zhao, Lei Duan, Jia Xing, Thorjorn Larssen, Chris P Nielsen, and Jiming Hao. 2009. “Soil acidification in China: Is controlling SO2 emissions enough?” Environmental Science and Technology, 43, 21, Pp. 8021-8026. Publisher's VersionAbstract
Facing challenges of increased energy consumption and related regional air pollution, China has been aggressively implementing flue gas desulfurization (FGD) and phasing out small inefficient units in the power sector in order to achieve the national goal of 10% reduction in sulfur dioxide (SO2) emissions from 2005 to 2010. In this paper, the effect of these measures on soil acidification is explored. An integrated methodology is used, combining emission inventory data, emission forecasts, air quality modeling, and ecological sensitivities indicated by critical load. National emissions of SO2, oxides of nitrogen (NOX), particulate matter (PM), and ammonia (NH3) in 2005 were estimated to be 30.7, 19.6, 31.3, and 16.6 Mt, respectively. Implementation of existing policy will lead to reductions in SO2 and PM emissions, while those of NOX and NH3 will continue to rise, even under tentatively proposed control measures. In 2005, the critical load for soil acidification caused by sulfur (S) deposition was exceeded in 28% of the country’s territory, mainly in eastern and south-central China. The area in exceedance will decrease to 26% and 20% in 2010 and 2020, respectively, given implementation of current plans for emission reductions. However, the exceedance of the critical load for nitrogen (N, combining effects of eutrophication and acidification) will double from 2005 to 2020 due to increased NOX and NH3 emissions. Combining the acidification effects of S and N, the benefits of SO2 reductions during 2005−2010 will almost be negated by increased N emissions. Therefore abatement of N emissions (NOX and NH3) and deposition will be a major challenge to China, requiring policy development and technology investments. To mitigate acidification in the future, China needs a multipollutant control strategy that integrates measures to reduce S, N, and PM.
2007
Chris P Nielsen and Mun S Ho. 2007. “Air pollution and health damages in China: An introduction and review.” In Clearing the air: The health and economic damages of air pollution in China, edited by Chris P Nielsen and Mun S Ho. Cambridge, MA: MIT Press. Publisher's VersionAbstract
An interdisciplinary, quantitative assessment of the health and economic costs of air pollution in China, and of market-based policies to build environmental protection into economic development.
Clearing the air: The health and economic damages of air pollution in China
2007. Clearing the air: The health and economic damages of air pollution in China. Cambridge, MA: MIT Press. Publisher's VersionAbstract
An interdisciplinary, quantitative assessment of the health and economic costs of air pollution in China, and of market-based policies to build environmental protection into economic development.
Yi-Ming Wei, Lan-Cui Liu, Ying Fan, and Gang Wu. 2007. “The impact of lifestyle on energy use and CO2 emission: An empirical analysis of China’s residents.” Energy Policy, 35, 1, Pp. 247-257. Publisher's VersionAbstract
Based on the application of a Consumer Lifestyle Approach (CLA), this paper quantifies the direct and indirect impact of lifestyle of urban and rural residents on China's energy use and the related CO2 emissions during the period 1999–2002. The results show that approximately 26 per cent of total energy consumption and 30 per cent of CO2 emission every year are a consequence of residents’ lifestyles, and the economic activities to support these demands. For urban residents the indirect impact on energy consumption is 2.44 times greater than the direct impact. Residence; home energy use; food; and education, cultural and recreation services are the most energy-intensive and carbon-emission-intensive activities. For rural residents, the direct impact on energy consumption is 1.86 times that of the indirect, and home energy use; food; education, and cultural recreation services; and personal travel are the most energy-intensive and carbon-emission-intensive activities. This paper provides quantitative evidence for energy conservation and environmental protection focused policies. China's security for energy supply is singled out as a serious issue for government policy-makers, and we suggest that government should harmonize the relationships between stakeholders to determine rational strategies.
Yuan Hu. 2007. “Implementation of voluntary agreements for energy efficiency in China.” Energy Policy, 35, 11, Pp. 5541-5548. Publisher's VersionAbstract
Low-energy efficiency and environmental pollution have long been taken as key problems of Chinese industry, although a number of command-and-control and economic instruments have been adopted in the last few decades. In this paper, policy and legislation development for voluntary agreements were summarized. The voluntary agreements pilot project in two iron and steel companies in Shandong Province as well as other cases were analyzed. In order to identify the existing problems in Chinese cases, comparison was made between China and industrialized countries in the practices of energy efficiency voluntary agreements. Based on the analysis, detained recommendations, including the use of supporting policies for voluntary agreements, were raised. It is expected that voluntary agreements could play a more important role in energy efficiency improvement of Chinese industry.
Bingjiang Liu and Jiming Hao. 2007. “Local population exposure to pollutants from the electric power sector.” In Clearing the air: The health and economic damages of air pollution in China, edited by Mun S Ho and Chris P Nielsen. Cambridge, MA: MIT Press. Publisher's VersionAbstract
An interdisciplinary, quantitative assessment of the health and economic costs of air pollution in China, and of market-based policies to build environmental protection into economic development.
Shuxiao Wang, Jiming Hao, Yongqi Lu, and Ji Li. 2007. “Local population exposure to pollutants from the major industrial sectors.” In Clearing the air: The health and economic damages of air pollution in China, edited by Mun S Ho and Chris P Nielsen. Cambridge, MA: MIT Press. Publisher's VersionAbstract
An interdisciplinary, quantitative assessment of the health and economic costs of air pollution in China, and of market-based policies to build environmental protection into economic development.
Ying Zhou, Jonathan I Levy, James K Hammitt, and John S Evans. 2007. “Population exposure to pollutants from the electric power sector using CALPUFF.” In Clearing the air: The health and economic damages of air pollution in China, edited by Mun S Ho and Chris P Nielsen. Cambridge, MA: MIT Press. Publisher's VersionAbstract
An interdisciplinary, quantitative assessment of the health and economic costs of air pollution in China, and of market-based policies to build environmental protection into economic development.
Yuxuan Wang, Michael B. McElroy, Randall V Martin, David G Streets, Qiang Zhang, and Tung-May Fu. 2007. “Seasonal variability of NOx emissions over east China constrained by satellite observations: Implications for combustion and microbial sources.” Journal of Geophysical Research, 112, D06301. Publisher's VersionAbstract
Observations of tropospheric column densities of NO2 obtained from the Global Ozone Monitoring Experiment (GOME) for a 3‐year period (1997, 1998, and 2000) are used to derive average seasonal variations in surface emissions of NOx from east China (100–123°E, 20–42°N). The retrieval allows for zonal variations in the contribution of the stratosphere to the NO2 column and removes a bias of ±10% on the seasonality of retrieved columns introduced by cloud screening. The top‐down inventory is constructed using an inversion approach with a global 3‐D chemical transport model (GEOS‐Chem) and combined subsequently with the a priori inventory to develop an a posteriori inventory. The contribution of background NO2 arising from nonsurface sources (lightning) and long‐range transport of emissions originating outside of east China is accounted for in the inversion. The a posteriori estimate of overall emissions for east China, 4.66 Tg N/yr (±30% uncertainty), is 33% higher than the a priori value and is shown to improve agreement with surface measurements of nitrate wet deposition and concentrations of NOy observed in China. On the basis of multiple constraints on the spatial and seasonal variations of combustion and microbial processes, the a posteriori inventory is partitioned among emissions from biomass burning, fuel combustion, and microbial activity (or soil emissions). Emission of NOx from biomass burning in east China is estimated as 0.08 TgN/yr ± 50% in the a posteriori inventory, increased by about a factor of 2 from the a priori estimate. The resulting a posteriori inventory for fuel combustion (3.72 TgN/yr ± 32%) is about 15% higher than the a priori and exhibits a distinct maximum in winter, in contrast to the weak seasonality indicated in the a priori inventory. The a posteriori value for the microbial source of NOx (0.85 TgN/yr ± 40%) is about a factor of 3 higher than the a priori value, amounting to 23% of combustion sources for east China and significantly higher than a priori value of 7%. The microbial source is unimportant in winter. It peaks in summer, accounting for as much as 43% of the combustion source for that season, and is significant also in spring and fall. This seasonality is attributed to the timing of fertilizer application and to the influence of seasonally variable environmental factors including temperature and precipitation.
Chris P Nielsen and Mun S Ho. 2007. “Summary for policy.” In Clearing the air: The health and economic damages of air pollution in China, edited by Mun S Ho and Chris P Nielsen. Cambridge, MA: MIT Press. Publisher's VersionAbstract
An interdisciplinary, quantitative assessment of the health and economic costs of air pollution in China, and of market-based policies to build environmental protection into economic development.
Chris P Nielsen and Mun S Ho. 2007. “Summary for research.” In Clearing the air: The health and economic damages of air pollution in China, edited by Mun S Ho and Chris P Nielsen. Cambridge, MA: MIT Press. Publisher's VersionAbstract
An interdisciplinary, quantitative assessment of the health and economic costs of air pollution in China, and of market-based policies to build environmental protection into economic development.
2006
Sue J. Lin, I.J. Lu, and Charles Lewis. 2006. “Identifying key factors and strategies for reducing industrial CO2 emissions from a non-Kyoto protocol member’s (Taiwan) perspective.” Energy Policy, 34, Pp. 1499-1507. Publisher's VersionAbstract
In this study we use Divisia index approach to identify key factors affecting CO2 emission changes of industrial sectors in Taiwan. The changes of CO2 emission are decomposed into emission coefficient, energy intensity, industrial structure and economic growth. Furthermore, comparisons with USA, Japan, Germany, the Netherlands and South Korea are made to have a better understanding of emission tendency in these countries and to help formulate our CO2 reduction strategies for responding to the international calls for CO2 cuts. The results show that economic growth and high energy intensity were two key factors for the rapid increase of industrial CO2 emission in Taiwan, while adjustment of industrial structure was the main component for the decrease. Although economic development is important, Taiwan must keep pace with the international trends for CO2 reduction. Among the most important strategies are continuous efforts to improve energy intensity, fuel mix toward lower carbon, setting targets for industrial CO2 cuts, and advancing green technology through technology transfer. Also, the clean development mechanism (CDM) is expected to play an important role in the future.
Ying Zhou, Jonathan I Levy, John S Evans, and James K Hammitt. 2006. “The influence of geographic location on population exposure to emissions from power plants throughout China.” Environment International, 32, 3, Pp. 365-373. Publisher's VersionAbstract
This analysis seeks to evaluate the influence of emission source location on population exposure in China to fine particles and sulfur dioxide. We use the concept of intake fraction, defined as the fraction of material or its precursor released from a source that is eventually inhaled or ingested by a population. We select 29 power-plant sites throughout China and estimate annual average intake fractions at each site, using identical source characteristics to isolate the influence of geographic location. In addition, we develop regression models to interpret the intake fraction values and allow for extrapolation to other sites. To model the concentration increase due to emissions from selected power plants, we used a detailed long-range atmospheric dispersion model, CALPUFF. Primary fine particles have the highest average intake fraction (1 × 10− 5), followed by sulfur dioxide (5 × 10− 6), sulfate from sulfur dioxide (4 × 10− 6), and nitrate from nitrogen oxides (4 × 10− 6). For all pollutants, the intake fractions span approximately an order of magnitude across sites. In the regression analysis, the independent variables are meteorological proxies (such as climate region and precipitation) and population at various distances from the source. We find that population terms can explain a substantial percentage of variability in the intake fraction for all pollutants (R2 between 0.86 and 0.95 across pollutants), with a significant modifying influence of meteorological regime. Near-source population is more important for primary coarse particles while population at medium to long distance is more important for primary fine particles and secondary particles. A significant portion of intake fraction (especially for secondary particles and primary fine particles) occurs beyond 500 km of the source, emphasizing the need for detailed long-range dispersion modeling. These findings demonstrate that intake fractions for power plants in China can be estimated with reasonable precision and summarized using simple regression models. The results should be useful for informing future decisions about power-plant locations and controls.
Shuxiao Wang, Jiming Hao, Mun S Ho, Ji Li, and Yongqi Lu. 2006. “Intake fractions of industrial air pollutants in China: Estimation and application.” Science of the Total Environment, 354, Pp. 127-141. Publisher's VersionAbstract
Intake fractions, an emissions-intake relationship for primary pollutants, are defined and are estimated in order to make simple estimates of health damages from air pollution. The sulfur dioxide (SO2) and total suspended particles (TSP) intake fractions for five cities of China are estimated for the four main polluting industries—electric power generation, mineral (mostly cement) products industry, chemical process industry and metallurgical industry (mainly iron and steel smelting). The Industrial Source Complex Long Term (ISTLT3) model is used to simulate the spatial distribution of incremental ambient concentrations due to emissions from a large sample of site-specific sources. Detailed population distribution information is used for each city. The average intake fractions within 50 km of these sources are 4.4 × 10- 6 for TSP, and 4.2 × 10- 6 for SO2, with standard deviations of 8.15 × 10- 6 and 9.16 × 10- 6, respectively. They vary over a wide range, from 10- 7 to 10- 5. Although the electric power generation has been the focus of much of the air pollution research in China, our results show that it has the lowest average intake fraction for a local range among the four industries, which highlights the importance of pollutant emissions from other industrial sources. Sensitivity analyses show how the intake fractions are affected by the source and pollutant characteristics, the most important parameter being the size of the domain. However, the intake fraction estimates are robust enough to be useful for evaluating the local impacts on human health of primary SO2 and TSP emissions. An application of intake fractions is given to demonstrate how this approach provides a rapid population risk estimate if the dose-response function is linear without threshold, and hence can help in prioritizing pollution control efforts.
2005
Michael B. McElroy and Yuxuan Wang. 2005. “Human and animal wastes: Implications for atmospheric N2O and NOX.” Global Biogeochemical Cycles, 19, 2. Publisher's VersionAbstract
More than 220 Tg N are processed annually through the global agriculture/animal/human food chain. It is suggested that aerobic denitrification, reduction of nitrite formed in the first stage of nitrification, is an important source not only of global N2O but also of NOx. A simple top‐down method indicates a globally averaged yield of 2% for N2O emitted as a consequence of human disturbances to the global nitrogen cycle. This yield can account not only for the contemporary budget of atmospheric N2O but also for trends observed over the past 1000 years. The associated microbial source of NOx is estimated assuming a NOx/N2O ratio of 3, consistent with results from a variety of laboratory and field studies. This source is significant, particularly for large developing countries such as China and India for which its contribution is comparable to that from fossil fuel.
2004
Y.X. Wang, M.B. McElroy, T. Wang, and P.I. Palmer. 2004. “Asian emissions of CO and NOX: Constraints from aircraft and Chinese station data.” Journal of Geophysical Research, 109, D24304. Publisher's Version
2003
Karen Fisher-Vanden. 2003. “The effects of market reforms on structural change: Implications for energy use and carbon emissions in China.” Energy Journal, 24, 3, Pp. 27-62. Publisher's VersionAbstract
This paper assesses the role played by market reforms in shaping the future level and composition of production, energy use, and carbon emissions in China. Arguments have been made that reducing distortions in China's economy through market reforms will lead to energy efficiency improvements and lower carbon emissions in China. However, these arguments are based on partial and not general equilibrium analyses, and therefore overlook the effects of market reforms on economic growth and structural change. The results suggest that further implementation of market reforms could result in a structural shift to less carbon-intensive production and thus lower carbon emissions per unit GDP. However, this fall in carbon intensity is not enough to compensate for the greater use of energy as a result of market reforms due to higher economic growth and changes in the composition of production. Therefore, China's transition to a market economy could result in significantly higher economic growth, energy use, and carbon emissions. These results could have implications for other countries considering or undergoing market transition.
Y. Zhou, Jonathan I Levy, James K Hammitt, and John S Evans. 2003. “Estimating population exposure to power plant emissions using CALPUFF: A case study in Beijing, China.” Atmospheric Environment, 37, 6, Pp. 815-826. Publisher's VersionAbstract
Epidemiological studies have shown a significant association between ambient particulate matter (PM) exposures and increased mortality and morbidity risk. Power plants are significant emitters of precursor gases of fine particulate matter. To evaluate the public health risk posed by power plants, it is necessary to evaluate population exposure to different pollutants. The concept of intake fraction (the fraction of a pollutant emitted that is eventually inhaled or ingested by a population) has been proposed to provide a simple summary measure of the relationship between emissions and exposure. Currently available intake fraction estimates from developing countries used models that look only at the near field impacts, which may not capture the full impact of a pollution source. This case study demonstrated how the intake fraction of power plant emissions in China can be calculated using a detailed long-range atmospheric dispersion model—CALPUFF. We found that the intake fraction of primary fine particles is roughly on the order of 10−5, while the intake fractions of sulfur dioxide, sulfate and nitrate are on the order of 10−6. These estimates are an order of magnitude higher than the US estimates. We also tested how sensitive the results were to key assumptions within the model. The size distribution of primary particles has a large impact on the intake fraction for primary particles while the background ammonia concentration is an important factor influencing the intake fraction of nitrate. The background ozone concentration has a moderate impact on the intake fraction of sulfate and nitrate. Our analysis shows that this approach is applicable to a developing country and it provides reasonable population exposure estimates.
2002
Ying Zhou. 2002. “Evaluating Power Plant Emissions in China: Human Exposure and Valuation.” Harvard School of Public Health.

Pages